Citation: Wang Fangyuan, Yao Keping, Peng Anshun, Wang Chengyu. Progress in the Construction of C-P Bonds[J]. Chemistry, ;2017, 80(6): 524-532, 543. shu

Progress in the Construction of C-P Bonds

  • Corresponding author: Wang Chengyu, wangchengyu@lyu.edu.cn
  • Received Date: 2 August 2016
    Accepted Date: 29 December 2016

Figures(1)

  • Organophosphorus compounds are widely used in pharmacy chemistry, material science, and organic synthesis. So how to construct C-P bonds become a focus in the field of organic synthesis chemistry. In this paper, recent progress in the construction of C-P bonds including traditional synthetic methods, conventional C-P coupling reactions, direct oxidative dehydrogenation coupling, the domino reactions between phosphorus radicals with unsaturated bonds, asymmetric C-P cross-coupling were reviewed. Their advantages and disadvantages, challenges, development directions were also discussed.
  • 加载中
    1. [1]

      J L Montchamp. Acc. Chem. Res., 2014, 47(1):77~87. 

    2. [2]

      S Sivendran, V Jones, D Sun et al. Med. Chem., 2010, 18:896~908. 

    3. [3]

      (a) Y J Cho, J Y Lee. Chem. Eur. J., 2011, 17(41):11415~11418;(b) S O Jeon, J Y Lee. J. Mater. Chem., 2012, 22:7239~7244;(c) V Bein, S Durganala, A B Morgan. J. Mater. Chem., 2012, 22:1180~1190. 

    4. [4]

      (a) T Baumgartner, R Reau. Chem. Rev., 2006, 106(11):4681~4727;(b) A R Choudhury, S Mukherjee. Adv. Synth. Catal., 2013, 355(10):1989~1995. 

    5. [5]

      (a) M N Birkholz, Z Freixa, P W N M van Leeuwen. Chem. Soc. Rev., 2009, 38(4):1099~1118;(b) H Fernández-Pérez, P Etayo, A Panossian et al. Chem. Rev., 2011, 111(3):2119~2176. 

    6. [6]

      V Mark, J R V Wazer. J. Org. Chem., 1964, 29(5):1006~1008. 

    7. [7]

      A Michaelis, T Becker. Chem. Ber., 1897, 30:1003~1009. 

    8. [8]

      F Hossein, M Akbar. Phosphorus Sulfur, 2006, 181:511~518. 

    9. [9]

      A P Vu, E A Shaffer, C L K Byington et al. Phosphorus Sulfur, 2010, 185(9):1845~1849. 

    10. [10]

      W Perkow, K Ullerich, F Meyer. Naturwissenschaften, 1952, 39:353~353.

    11. [11]

      A M Aguiar, M S Chattha. J. Org. Chem., 1971, 36(18):2719~2720. 

    12. [12]

      T Hirao, T Masunaga, Y Ohshiro et al. Synthesis, 1981(1), 56~57.

    13. [13]

      For copper-catalyzed C-P bond formation, see:(a) T Ogawa, N Usuki, N Ono. J. Chem. Soc., Perkin Transac., 1998, 2953~2958;(b) H H Rao, Y Jin, H Fu et al. Chem. Eur. J., 2006, 12(13):3636~3646;(c) C Huang, X Tang,Y Y Jiang et al. J. Org. Chem., 2006, 71(13):5020~5022.

    14. [14]

      T Hirao, T Masunaga, N Yamada et al. Bull. Chem. Soc. Jpn., 1982, 55:909~913 

    15. [15]

      Y L Zhao, G J Wu, Y Li et al. Chem. Eur. J., 2012, 18(31):9622~9627. 

    16. [16]

      K Xu, F Yang, G D Zhang et al. Green Chem., 2013, 15:1055~1060. 

    17. [17]

      K S Petrakis, T L Nagabhushan. J. Am. Chem. Soc., 1987, 109(9):2831~2833. 

    18. [18]

      C R Shen, G Q Yang, W B Zhang. Org. Biomol. Chem., 2012, 10:3500~3505. 

    19. [19]

      W C Fu, C M So, F Y Kwong. Org. Lett., 2015, 17(23):5906~5909. 

    20. [20]

      R Berrino, S Cacchi, G Fabrizi et al. Org. Biomol. Chem., 2010, 8:4518~4520. 

    21. [21]

      Y He, H M Wu, F D Toste. Chem. Sci., 2015, 6(2):1194~1198. 

    22. [22]

      J S Zhang, T Q Chen, J Yang et al. Chem. Commun., 2015, 51(35):7540~7542. 

    23. [23]

      M Andaloussi, J Lindh, J Savmarker et al. Chem. Eur. J., 2009, 15(47):13069~13074. 

    24. [24]

      R Q Zhuang, J Xu, Z S Cai et al. Org. Lett., 2011, 13(8):2110~2113. 

    25. [25]

      G B Hu, W Z Chen, T T Fu et al. Org. Lett., 2013, 15(20):5362~5365. 

    26. [26]

    27. [27]

      E R T Tiekink. Crit. Rev. Oncol. Hemat., 2001, 42:217~224.

    28. [28]

      H Sun, H Li, P J Sadler. Chem. Ber. Recueil, 1997, 130:669~681. 

    29. [29]

      T Wang, S Sang, L Liu et al. J. Org. Chem., 2014, 79(2):608~617. 

    30. [30]

      K Marcin, J Tommy, J Martina et al. Org. Lett., 2010, 12(20):4702~4704. 

    31. [31]

      J Hu, N Zhao, B Yang et al. Chem. Eur. J., 2011, 17(20):5516~5521. 

    32. [32]

      Y L Wu, L Liu, K L Yan et al. J. Org. Chem., 2014, 79(17):8118~8127. 

    33. [33]

      X Li, F Yang, Y J Wu et al. Org. Lett., 2014, 16(3):992~995. 

    34. [34]

      O Basle, C J Li. Chem. Commun., 2009, (27):4124~4126.

    35. [35]

      W Han, A R Ofial. Chem. Commun., 2009, (40):6023~6025.

    36. [36]

      M Rueping, S Zhu, R M Koenigs. Chem. Commun., 2011, 47(30):8679~8681. 

    37. [37]

      W J Yoo, S Kobayashi. Green Chem., 2014, 16:2438~2442. 

    38. [38]

      J Ke, Y Tang, H Yi et al. Angew. Chem. Int. Ed. 2015, 54(22):6604~6607.

    39. [39]

      E F Jason, E K Fields. J. Org. Chem., 1962, 27(4):1402~1405. 

    40. [40]

      O Tayama, A Nakano, T Iwahama et al. J. Org. Chem., 2004, 69(16):5494~5496. 

    41. [41]

      X J Mu, J P Zou, Q F Qian et al. Org. Lett., 2006, 8(23):5291~5293. 

    42. [42]

      C B Xiang, Y J Bian, X R Mao et al. J. Org. Chem., 2012,77(17):7706~7710. 

    43. [43]

      X Mao, X Ma, S Zhang et al. Eur. J. Org. Chem., 2013, 78(20):4245~4248.

    44. [44]

      X L Chen, X Li, L B Qu et al. J. Org. Chem., 2014, 79(17):8407~8416. 

    45. [45]

      K Luo, Y Z Chen, L X Chen et al. J. Org. Chem., 2016, 81(11):4682~4689. 

    46. [46]

      C Hou, Y Ren, R Liang et al. Chem. Commun., 2012, 48(42):5181~5183. 

    47. [47]

      C G Feng, M Te, K J Xiao et al. J. Am. Chem. Soc., 2013, 135(25):9322~9325. 

    48. [48]

      Y X Gao, G Wang, L Chen et al. J. Am. Chem. Soc., 2009, 131(23):7956~7957. 

    49. [49]

      T Wang, S T Chen, A L Shao et al. Org. Lett., 2015, 17(1):118~121. 

    50. [50]

      A R Stiles, W E Vaughan, F F Rust. J. Am. Chem. Soc., 1958, 80(3):714~716. 

    51. [51]

      X Q Pan, L Wang, J P Zou et al. Chem. Commun. 2011, 47(27):7875~7877.

    52. [52]

      L J Wang, A Q Wang, Y Xia et al. Chem. Commun. 2014, 50(90):13998~4001.

    53. [53]

      H L Hua, B S Zhang, Y T He et al. Org. Lett., 2016, 18(2):216~219. 

    54. [54]

      Y Z Gao, X Q Li, J Xu et al. Chem. Commun., 2015, 51(9):1605~1607. 

    55. [55]

      Y Z Gao, G Z Lu, P B Zhang et al. Org. Lett., 2016, 18(6):1242~1245. 

    56. [56]

      W Wei, J X Ji. Angew. Chem. Int. Ed., 2011, 50(39):9097~9099. 

    57. [57]

      N N Yi, R J Wang, H X Zou et al. J. Org. Chem., 2015, 80(10):5023~5029. 

    58. [58]

      C W Zhang, Z D Li, L Zhu et al. J. Am. Chem. Soc., 2013, 135(38):14082~14085. 

    59. [59]

      Z Z Zhou, D P Jin, L H Li et al. Org. Lett., 2014, 16(21):5616~5619. 

    60. [60]

      Q W Gui, L Hu, X Chen et al. Chem. Commun., 2015, 51(73):13922~13924. 

    61. [61]

      S F Zhou, D P Li, K Liu et al. J. Org. Chem., 2015, 80(2):1214~1220. 

    62. [62]

      T Yokomatss,T Yamagisbi, S Shibuya. Tetrahed.:Asymm., 1993, 4(8):1779~1782. 

    63. [63]

      M D Groaning, B J Rowe, C D Spilling. Tetrahed. Lett., 1998, 39(31):5485~5488. 

    64. [64]

      I Schlemminger, Y Saida, H Gr ger et al. J. Org. Chem., 2000, 65(16):4818~4825. 

    65. [65]

      (a) S H Gou, X Zhou, J Wang et al. Tetrahedron, 2008, 64(12):2864~2870;(b) B Saito, H Egami, T Katsuki. J. Am. Chem. Soc., 2007, 129(7):1978~1986;(c) B Saito, T Katsuki. Angew. Chem. Int. Ed., 2005, 44(29):4600~4602.

    66. [66]

      W L Chen, Y H Hui, X Zhou et al. Tetrahed. Lett., 2010, 51(32):4175~4178. 

    67. [67]

      (a) H Sasai, S Arai, Y Tahara. J. Org. Chem., 1995, 60(21):6656~6657.(b) H Sasai, M Bougauchi, T Arai et al. Tetrahed. Lett., 1997, 38(15):2717~2720. 

    68. [68]

      T Arai, M Bougauchi, H Sasai et al. J. Org. Chem., 1996, 61(9):2926~2927. 

    69. [69]

      K Bravo-Altamirano, L Coudray, E L Deal et al. Org. Biomol. Chem., 2010, 8:5541~5551. 

    70. [70]

      C Scriban, D S Glueck. J. Am. Chem. Soc., 2006, 128(9):2788~2789. 

    71. [71]

      J R Moncarz, N F Laritcheva, D S Glueck. J. Am. Chem. Soc., 2002, 124(45):13356~13357. 

    72. [72]

      B J Anderson, M A Guino-o, D S Glueck et al. Org. Lett., 2008, 10(20):4425~4428. 

    73. [73]

      V Bhat, S Wang, B M Stoltz et al. J. Am. Chem. Soc., 2013, 135(45):16829~16832. 

    74. [74]

      P Ramírez-López, A Ros, B Estepa et al. ACS Catal., 2016, 6(6):3955~3964. 

  • 加载中
    1. [1]

      Fengxiao Wang Zhiwei Miao Yaofeng Yuan . 有机磷化学与化学教学. University Chemistry, 2025, 40(8): 158-168. doi: 10.12461/PKU.DXHX202410077

    2. [2]

      Shuai Yuan Yaofeng Yuan . Academician Chengye Yuan and Organic Phosphorus Chemistry. University Chemistry, 2025, 40(7): 393-400. doi: 10.12461/PKU.DXHX202409123

    3. [3]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    4. [4]

      Junyuan Zhang Zhiwei Miao . 有机磷杀虫剂的前世今生. University Chemistry, 2025, 40(6): 129-138. doi: 10.12461/PKU.DXHX202408118

    5. [5]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    6. [6]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    7. [7]

      Xinxin Wu . 基础有机化学教学中自由基重排反应的课程设计及其课程思政元素的融入. University Chemistry, 2025, 40(6): 316-325. doi: 10.12461/PKU.DXHX202408055

    8. [8]

      Qilong Fang Yiqi Li Jiangyihui Sheng Quan Yuan Jie Tan . Magical Pesticide Residue Detection Test Strips: Aptamer-based Lateral Flow Test Strips for Organophosphorus Pesticide Detection. University Chemistry, 2024, 39(5): 80-89. doi: 10.3866/PKU.DXHX202310004

    9. [9]

      Tongyan Yu Pan Xu . Visible-Light Photocatalyzed Radical Rearrangement Reaction. University Chemistry, 2025, 40(7): 169-176. doi: 10.12461/PKU.DXHX202409070

    10. [10]

      Qianlang Wang Jijun Sun Qian Chen Quanqin Zhao Baojuan Xi . The Appeal of Organophosphorus Compounds: Clearing Their Name. University Chemistry, 2025, 40(4): 299-306. doi: 10.12461/PKU.DXHX202405205

    11. [11]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    12. [12]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    13. [13]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    14. [14]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    15. [15]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    16. [16]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    17. [17]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    18. [18]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    19. [19]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    20. [20]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

Metrics
  • PDF Downloads(268)
  • Abstract views(7856)
  • HTML views(2932)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return