Citation: LI Xiao-ming, ZHANG Hong, LIU Meng-jie, ZHI Li-fei, BAI Jin, BAI Zong-qing, LI Wen. Investigation of coal-biomass interaction during co-pyrolysis by char separation and its effect on coal char structure and gasification reactivity with CO2[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(8): 897-907. shu

Investigation of coal-biomass interaction during co-pyrolysis by char separation and its effect on coal char structure and gasification reactivity with CO2

  • Corresponding author: BAI Jin, stone@sxicc.ac.cn
  • Received Date: 2 June 2020
    Revised Date: 28 July 2020

    Fund Project: Natural Science Foundation of China and Xinjiang Province U1703252Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province 2017006Natural Science Foundation of Shanxi Province 201801D121050The project was supported by Natural Science Foundation of Shanxi Province (201801D121050), Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province (2017006), Shanxi Scholarship Council of China (2017-086), and Natural Science Foundation of China and Xinjiang Province (U1703252)Shanxi Scholarship Council of China 2017-086

Figures(7)

  • The interaction between coal and biomass has been widely investigated. However, the mechanism is always proposed based on physicochemical structure and reactivity of char mixture. In this work, char mixture after co-pyrolysis of anthracite and biomass was separated based on different shape and size, and then structure and reactivity of the coal char were analyzed to reveal mechanism of coal-biomass interaction. Anthracite char samples with different corn straw (CS) blending ratios were prepared by pyrolysis in a fixed bed reactor at 600 and 900℃. The AAEM concentration and microcrystalline structures of coal char were examined by inductively coupled plasma-optical emission spectrometry (ICP-OES) system and X-ray diffraction (XRD). The gasification reactivity of char sample after separation was analyzed by TGA under CO2. The results show that concentration of active K and Mg in coal char samples gradually increased and more disordered carbon structure formed as the CS proportion in the blending increased from 0 to 80%. The coal char in the blending captured more AAEM species by volatile-char interactions instead of escaping with volatile from biomass during co-pyrolysis process. Meanwhile, higher pyrolysis temperature led to volatilization and inactivation of K and Na, and also decrease in graphitization degree. Moreover, both addition of CS and low pyrolysis temperature could promote gasification reactivity of coal char sample. Furthermore, a satisfactory linear correlation (R2=0.9009) between alkali index AI and R0.5 of the char samples was established. This indicated that AAEMs performed the dominate effect to enhance gasification reactivity of coal char during co-gasification of coal and biomass.
  • 加载中
    1. [1]

      JEONG H J, PARK S S, HWANG J. Co-gasification of coal-biomass blended char with CO2 at temperatures of 900-1100℃[J]. Fuel, 2014,116:465-470. doi: 10.1016/j.fuel.2013.08.015

    2. [2]

      YUAN S, CHEN X L, LI J, WANG F C. CO2 gasification kinetics of biomass char derived from high-temperature rapid pyrolysis[J]. Energy Fuels, 2011,25(5):2314-2321. doi: 10.1021/ef200051z

    3. [3]

      STIEGEL G J, MAXWELL R C. Gasification technologies:The path to clean, affordable energy in the 21st century[J]. Fuel Process Technol, 2001,71(1/3):79-97.  

    4. [4]

      FRANCO A, DIAZ A R. The future challenges for "clean coal technologies":Joining efficiency increase and pollutant emission control[J]. Energy, 2008,34(3):348-354.  

    5. [5]

      DI BLASI C. Combustion and gasification rates of lignocellulosic chars[J]. Prog Energy Combust Sci, 2009,35(2):121-140. doi: 10.1016/j.pecs.2008.08.001

    6. [6]

      DUPONT C, NOCQUET T, DA COSTA J A, VERNE-TOURNON C. Kinetic modelling of steam gasification of various woody biomass chars:Influence of inorganic elements[J]. Bioresour Technol, 2011,102(20):9743-9748. doi: 10.1016/j.biortech.2011.07.016

    7. [7]

      DING L, ZHANG Y, WANG Z, HUANG J, FANG Y. Interaction and its induced inhibiting or synergistic effects during co-gasification of coal char and biomass char[J]. Bioresour Technol, 2014,173:11-20. doi: 10.1016/j.biortech.2014.09.007

    8. [8]

      LIU L, CAO Y, LIU Q C. Kinetics studies and structure characteristics of coal char under pressurized CO2 gasification conditions[J]. Fuel, 2015,146:103-110. doi: 10.1016/j.fuel.2015.01.002

    9. [9]

      WU Z Q, YANG W C, LI Y W, YANG B L. Co-pyrolysis behavior of microalgae biomass and low-quality coal:Products distributions, char-surface morphology, and synergistic effects[J]. Bioresour Technol, 2018,255:238-245. doi: 10.1016/j.biortech.2018.01.141

    10. [10]

      WU Z Q, WANG S Z, LUO Z Y, CHEN L, MENG H Y, ZHAO J. Physico-chemical properties and gasification reactivity of co-pyrolysis char from different rank of coal blended with lignocellulosic biomass:Effects of the cellulose[J]. Bioresour Technol, 2017,235:256-264. doi: 10.1016/j.biortech.2017.03.121

    11. [11]

      WU Z Q, MA C, JIANG Z, LUO Z Y. Structure evolution and gasification characteristic analysis on co-pyrolysis char from lignocellulosic biomass and two ranks of coal:Effect of wheat straw[J]. Fuel, 2019,239:180-190. doi: 10.1016/j.fuel.2018.11.015

    12. [12]

      LI S D, CHEN X L, WANG L, LIU A B, YU G S. Co-pyrolysis behaviors of saw dust and Shenfu coal in drop tube furnace and fixed bed reactor[J]. Bioresour Technol, 2013,148:24-29. doi: 10.1016/j.biortech.2013.08.126

    13. [13]

      ZHU W K, SONG W L, LIN W G. Catalytic gasification of char from co-pyrolysis of coal and biomass[J]. Fuel Process Technol, 2008,89(9):890-896. doi: 10.1016/j.fuproc.2008.03.001

    14. [14]

      LI C Z. Importance of volatile-char interactions during the pyrolysis and gasification of low-rank fuels-A review[J]. Fuel, 2013,112:609-623. doi: 10.1016/j.fuel.2013.01.031

    15. [15]

      ASADULLAH M, ZHANG S, MIN Z, YIMSIRI P, LI C Z. Effects of biomass char structure on its gasification reactivity[J]. Bioresour Technol, 2010,101(20):7935-7943. doi: 10.1016/j.biortech.2010.05.048

    16. [16]

      LIANG D C, XIE Q, WAN C R, LI G S, CAO J Y. Evolution of structural and surface chemistry during pyrolysis of Zhundong coal in an entrained-flow bed reactor[J]. J Anal Appl Pyrolysis, 2019,140:331-338. doi: 10.1016/j.jaap.2019.04.010

    17. [17]

      YUAN S, DAI Z H, ZHOU Z J, CHEN X L, YU G S, WANG F C. Rapid co-pyrolysis of rice straw and a bituminous coal in a high-frequency furnace and gasification of the residual char[J]. Bioresour Technol, 2012,109:188-197. doi: 10.1016/j.biortech.2012.01.019

    18. [18]

      LIU M J, BAI J, KONG L X, BAI Z Q, HE C, LI W. The correlation between coal char structure and reactivity at rapid heating condition in TGA and heating stage microscope[J]. Fuel, 2020,260116318. doi: 10.1016/j.fuel.2019.116318

    19. [19]

      WU S Y, JING G, XIAO Z, WU Y Q, CAO J S. Variation of carbon crystalline structures and CO2 gasification reactivity of Shenfu coal chars at elevated temperatures[J]. Energy Fuels, 2008,22(1):199-206.  

    20. [20]

      BO F, BHATIA S K, BARRY J C. Variation of the crystalline structure of coal char during gasification[J]. Energy Fuels, 2003,17(3):744-754. doi: 10.1021/ef0202541

    21. [21]

      YAN L B, CAO Y, ZHOU H Z Y, HE B S. Investigation on biomass steam gasification in a dual fluidized bed reactor with the granular kinetic theory[J]. Bioresour Technol, 2018,269:384-392. doi: 10.1016/j.biortech.2018.08.099

    22. [22]

      WEI J T, GONG Y, GUO Q H, CHEN X L, DING L, YU G S. A mechanism investigation of synergy behaviour variations during blended char co-gasification of biomass and different rank coals[J]. Renewable Energy, 2019,131:597-605. doi: 10.1016/j.renene.2018.07.075

    23. [23]

      HUANG Y Q, YIN X L, WU C Z, WANG C W, XIE J J, ZHOU Z Q, MA L L, LI H B. Effects of metal catalysts on CO2 gasification reactivity of biomass char[J]. Biotechnol Adv, 2009,27(5):568-572. doi: 10.1016/j.biotechadv.2009.04.013

    24. [24]

      JIA S, NING S Y, YING H, SUN Y J, XU W, YIN H. High quality syngas production from catalytic gasification of woodchip char[J]. Energy Convers Manage, 2017,151:457-464. doi: 10.1016/j.enconman.2017.09.008

    25. [25]

      QI X J, XIN G, XUE L C, ZHENG C G. Effect of iron on Shenfu coal char structure and its influence on gasification reactivity[J]. J Fuel Chem Technol, 2014,110:401-407.  

    26. [26]

      BAI B Y, GUO Q J, LI Y K, HU X D, MA J J. Catalytic gasification of crushed coke and changes of structural characteristics[J]. Energy Fuels, 2018,32(3):3356-3367. doi: 10.1021/acs.energyfuels.8b00192

    27. [27]

      YU J Q, GONG Y, WEI J T, DING L, SONG X D, YU G S. Promoting effect of biomass ash additives on high-temperature gasification of petroleum coke:Reactivity and kinetic analysis[J]. J Energy Inst, 2020,52:420-425.  

    28. [28]

      AZARGOHAR R, NANDA S, KOZINSKI J A, DALAI A K, SUTARTO R. Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass[J]. Fuel, 2014,125:90-100. doi: 10.1016/j.fuel.2014.01.083

    29. [29]

      WANG G W, ZHANG J L, HOU X M, SHAO J G, GENG W W. Study on CO2 gasification properties and kinetics of biomass chars and anthracite char[J]. Bioresour Technol, 2015,177:66-73. doi: 10.1016/j.biortech.2014.11.063

    30. [30]

      OCHOA J, CASSANELLO M C, BONELLI P R, CUKIERMAN A L. CO2 gasification of Argentinean coal chars:A kinetic characterization[J]. Fuel Process Technol, 2001,74(3):161-176.  

    31. [31]

      LU L M, KONG C H, SAHAJWALLA V, HARRIS D. Char structural ordering during pyrolysis and combustion and its influence on char reactivity[J]. Fuel, 2002,81(9):1215-1225. doi: 10.1016/S0016-2361(02)00035-2

    32. [32]

      TAY H L, LI C Z. Changes in char reactivity and structure during the gasification of a Victorian brown coal:Comparison between gasification in O2 and CO2[J]. Fuel Process Technol, 2010,91(8):800-804. doi: 10.1016/j.fuproc.2009.10.016

    33. [33]

      LIU M J, BAI J, YU J L, KONG L X, BAI Z Q, LI H Z, HE C, GE Z F, CAO X, LI W. Correlation between char gasification characteristics at different stages and microstructure of char by combining X-ray diffraction and raman spectroscopy[J]. Energy Fuels, 2020,34(4):4162-4172. doi: 10.1021/acs.energyfuels.9b04445

    34. [34]

      LAHIJANI P, ZAINAL Z A, MOHAMED A R, MOHAMMADI M. CO2 gasification reactivity of biomass char:Catalytic influence of alkali, alkaline earth and transition metal salts[J]. Bioresour Technol, 2013,144:288-295. doi: 10.1016/j.biortech.2013.06.059

    35. [35]

      MITSUHIRO S, YOSHIHISA S, YUKIAKI H. Influence of coal characteristics on CO2 gasification[J]. Elsevier, 1982,61(8):717-720.  

  • 加载中
    1. [1]

      Jumei ZhangZiheng ZhangGang LiHongjin QiaoHua XieLing Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278

    2. [2]

      Junqi WangShuai ZhangJingjing MaXiangjun LiuYayun MaZhimin FanJingfeng Wang . Augmenting levoglucosan production through catalytic pyrolysis of biomass exploiting Ti3C2Tx MXene. Chinese Chemical Letters, 2024, 35(12): 109725-. doi: 10.1016/j.cclet.2024.109725

    3. [3]

      Junhao DaiZhu HeXinhai LiGuochun YanHui DuanGuangchao LiZhixing WangHuajun GuoWenjie PengJiexi Wang . Ultrafast spray pyrolysis for synthesizing uniform Mg-doped LiNi0.9Co0.05Mn0.05O2. Chinese Chemical Letters, 2025, 36(6): 110063-. doi: 10.1016/j.cclet.2024.110063

    4. [4]

      Yongheng Ren Yang Chen Hongwei Chen Lu Zhang Jiangfeng Yang Qi Shi Lin-Bing Sun Jinping Li Libo Li . Electrostatically driven kinetic Inverse CO2/C2H2 separation in LTA-type zeolites. Chinese Journal of Structural Chemistry, 2024, 43(10): 100394-100394. doi: 10.1016/j.cjsc.2024.100394

    5. [5]

      Huirong Chen Yingzhi He Yan Han Jianbo Hu Jiantang Li Yunjia Jiang Basem Keshta Lingyao Wang Yuanbin Zhang . A new SIFSIX anion pillared cage MOF with crs topological structure for efficient C2H2/CO2 separation. Chinese Journal of Structural Chemistry, 2025, 44(2): 100508-100508. doi: 10.1016/j.cjsc.2024.100508

    6. [6]

      Ajay Piriya Vijaya Kumar Saroja Yuhan Wu Yang Xu . Improving the electrocatalysts for conversion-type anodes of alkali-ion batteries. Chinese Journal of Structural Chemistry, 2025, 44(1): 100408-100408. doi: 10.1016/j.cjsc.2024.100408

    7. [7]

      Ningning GaoYue ZhangZhenhao YangLijing XuKongyin ZhaoQingping XinJunkui GaoJunjun ShiJin ZhongHuiguo Wang . Ba2+/Ca2+ co-crosslinked alginate hydrogel filtration membrane with high strength, high flux and stability for dye/salt separation. Chinese Chemical Letters, 2024, 35(5): 108820-. doi: 10.1016/j.cclet.2023.108820

    8. [8]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

    9. [9]

      Xu-Hui YueXiang-Wen ZhangHui-Min HeLei QiaoZhong-Ming Sun . Synthesis, chemical bonding and reactivity of new medium-sized polyarsenides. Chinese Chemical Letters, 2024, 35(7): 108907-. doi: 10.1016/j.cclet.2023.108907

    10. [10]

      Yuanjin ChenXianghui ShiDajiang HuangJunnian WeiZhenfeng Xi . Synthesis and reactivity of cobalt dinitrogen complex supported by nonsymmetrical pincer ligand. Chinese Chemical Letters, 2024, 35(7): 109292-. doi: 10.1016/j.cclet.2023.109292

    11. [11]

      Xuehua SUNMin MAJianting LIURui TIANHongmei CHAIHuali CUILoujun GAO . Pr/N co-doped biomass carbon dots with enhanced fluorescence for efficient detection of 2,4-dinitrophenylhydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 561-573. doi: 10.11862/CJIC.20240294

    12. [12]

      Huazhe WangChenghuan QiaoChuchu ChenBing LiuJuanshan DuQinglian WuXiaochi FengShuyan ZhanWan-Qian Guo . Synergistic adsorption and singlet oxygenation of humic acid on alkali-activated biochar via peroxymonosulfate activation. Chinese Chemical Letters, 2025, 36(5): 110244-. doi: 10.1016/j.cclet.2024.110244

    13. [13]

      Shiqi XuZi YeShuang ShangFengge WangHuan ZhangLianguo ChenHao LinChen ChenFang HuaChong-Jing Zhang . Pairs of thiol-substituted 1,2,4-triazole-based isomeric covalent inhibitors with tunable reactivity and selectivity. Chinese Chemical Letters, 2024, 35(7): 109034-. doi: 10.1016/j.cclet.2023.109034

    14. [14]

      Caixia ZhuQing HongKaiyuan WangYanfei ShenSongqin LiuYuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560

    15. [15]

      Lingling SuQunyan WuCongzhi WangJianhui LanWeiqun Shi . Theoretical design of polyazole based ligands for the separation of Am(Ⅲ)/Eu(Ⅲ). Chinese Chemical Letters, 2024, 35(8): 109402-. doi: 10.1016/j.cclet.2023.109402

    16. [16]

      Jingwen ZhaoJianpu TangZhen CuiLimin LiuDayong YangChi Yao . A DNA micro-complex containing polyaptamer for exosome separation and wound healing. Chinese Chemical Letters, 2024, 35(9): 109303-. doi: 10.1016/j.cclet.2023.109303

    17. [17]

      Huangjie Lu Yingzhe Du Peng Lin Jian Lin . Separation of americium from lanthanides based on oxidation state control. Chinese Journal of Structural Chemistry, 2024, 43(10): 100344-100344. doi: 10.1016/j.cjsc.2024.100344

    18. [18]

      Hao-Cong LiMing ZhangQiyan LvKai SunXiao-Lan ChenLingbo QuBing Yu . Homogeneous catalysis and heterogeneous separation: Ionic liquids as recyclable photocatalysts for hydroacylation of olefins. Chinese Chemical Letters, 2025, 36(2): 110579-. doi: 10.1016/j.cclet.2024.110579

    19. [19]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    20. [20]

      Feng CaoChunxiang XianTianqi YangYue ZhangHaifeng ChenXinping HeXukun QianShenghui ShenYang XiaWenkui ZhangXinhui Xia . Gelation-pyrolysis strategy for fabrication of advanced carbon/sulfur cathodes for lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110575-. doi: 10.1016/j.cclet.2024.110575

Metrics
  • PDF Downloads(2)
  • Abstract views(1205)
  • HTML views(119)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return