Citation: CHEN Zong-ding, WANG Yong-gang, XU De-ping, XU Xiu-qiang. Changes in char properties after catalytic reforming volatiles from pyrolysis of brown coal[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(8): 908-915. shu

Changes in char properties after catalytic reforming volatiles from pyrolysis of brown coal

  • Corresponding author: WANG Yong-gang, wyg1960@126.com
  • Received Date: 13 February 2017
    Revised Date: 2 May 2017

    Fund Project: The project was supported by the 12th Five-Year Plan of National Science and Technology Support (2012BAA04B02)The project was supported by the 12th Five-Year Plan of National Science and Technology Support 2012BAA04B02

Figures(10)

  • To decrease tar yield and thus improving gasification efficiency, tar from pyrolysis of Shengli brown coal was catalytically reformed in situ in a two-stage quartz reactor using char (as catalyst) prepared from the pyrolysis of same coal. The properties of char catalysts before and after reactions were analyzed and compared. The results show that the mass of char generally decreases after the reforming reactions, which means that char is a kind of consumptive catalyst. The maximum reduction in specific surface area after reactions is from 422 to 231.8 m2/g. Results from Raman spectroscopy show that the O-containing functional groups, as well as the ratio of small aromatic rings (3-5 aromatic rings) to big aromatic rings (more than 5 aromatic rings) in char, decrease after the reactions. Besides, it appears that during the interaction between char and volatile, char from fast-heating pyrolysis mainly cracks the volatiles into small-molecule gases, while char from slow-heating pyrolysis removes the volatiles by coking on its surface.
  • 加载中
    1. [1]

      WANG L, WU C, ZHAO Z. Effect of char on catalytic cracking of tar from biomass gasification with toluene as a model compound[J]. Acta Energi Sin, 2006,27(5):514-518.  

    2. [2]

      WANG F J, ZHANG S, CHEN Z D, LIU C, WANG Y G. Tar reforming using char as catalyst during pyrolysis and gasification of Shengli brown coal[J]. J Anal Appl Pyrolysis, 2014,105:269-275. doi: 10.1016/j.jaap.2013.11.013

    3. [3]

      ABU E Z, BRAMER E A, BREM G. Experimental comparison of biomass chars with other catalysts for tar reduction[J]. Fuel, 2008,87:2243-2252. doi: 10.1016/j.fuel.2008.01.004

    4. [4]

      BRANDT P, LARSEN E, HENRIKSEN U. High tar reduction in a two-stage gasifier[J]. Energy Fuels, 2000,14:816-824. doi: 10.1021/ef990182m

    5. [5]

      ASADULLAH M, ZHANG S, MIN Z H, YIMSIRI P, LI C Z. Effects of biomass char structure on its gasification reactivity[J]. Bioresour Technol, 2010,101:7935-7943. doi: 10.1016/j.biortech.2010.05.048

    6. [6]

      YOU Zhan-ping. Research on catalytic reforming of tar from pyrolysis using biomass char as catalyst[D]. Tianjin: Tianjin University, 2010. 

    7. [7]

      SONG Y, WANG Y, HU X, XIANG J, HU S, MOURANT D, LI T T, WU L P, LI C Z. Effect of volatile-char interaction on in situ destruction of nascent tar during the pyrolysis and gasification of biomass. Part 1. Roles of nascent char[J]. Fuel, 2014,122:60-66. doi: 10.1016/j.fuel.2014.01.002

    8. [8]

      CHEN Zong-ding, ZHANG Shu, WANG Fang-jie, JIA Xiao-lu, XU De-ping, WANG Yong-gang. Study on in-situ catalytic reforming of coal tar from pyrolysis of brown coal by activated and inactivated char[J]. Coal Sci Technol, 2014,11:105-110.  

    9. [9]

      ZHANG S, MIN Z H, TAY H L, ASADULLAH M, LI C Z. Effects of volatile-char interactions on the evolution of char structure during the gasification of Victorian brown coal in steam[J]. Fuel, 2011,90:1529-1535. doi: 10.1016/j.fuel.2010.11.010

    10. [10]

      XU Xiu-qiang, WANG Yong-gang, CHEN Zong-ding, BAI Lei, ZHANG Kun-jun, YANG Sa-sha, ZHANG Shu. Influence of cooling treatments on char microstructure and reactivity of Shengli brown coal[J]. J Fuel Chem Technol, 2015,43(1):1-8.  

    11. [11]

      XU Xiu-qiang, WANG Yong-gang, ZHANG Shu, CHEN Zong-ding, CHEN Xu-jun, HE Xin. Evolution behavior of reactivity and micro-structure of lignite char during in-situ gasification with steam[J]. J Fuel Chem Technol, 2015,03:273-280. doi: 10.3969/j.issn.0253-2409.2015.03.004 

    12. [12]

      XU Xiu-qiang, WANG Yong-gang, CHEN Guo-peng, CHEN Zong-ding, QIN Zhong-yu, DAI Jin-ze, ZHANG Shu, XU De-ping. Effects of steam on the reactivity and microstructure of char from in-situ gasification of brown coal[J]. J Fuel Chem Technol, 2015,43(5):546-553.  

    13. [13]

      MIN Z H, ZHANG S, YIMSIRI P, WAGN Y, ASADULLAH M, LI C Z. Catalytic reforming of tar during gasification. Part Ⅳ. Changes in the structure of char in the char-supported iron catalyst during reforming[J]. Fuel, 2013,106:858-863. doi: 10.1016/j.fuel.2012.11.063

    14. [14]

      LIU S Y, WANG Y, WU R C, ZENG X, GAO S Q, XU G W. Fundamentals of catalytic tar removal over in situ and ex situ chars in two-stage gasification of coal[J]. Energy Fuels, 2014:58-66.  

    15. [15]

      LIU Shu-yuan, WANG Yin, WU Rong-cheng, ZENG Xi, XU Guang-wen. Research on coal tar catalytic cracking over hot in-situ chars[J]. J Fuel Chem Technol, 2013,41(9):1041-1049.  

    16. [16]

      MIN Z H, YIMSIR P, ASADULLAH M, ZHANG S, LI C Z. Catalytic reforming of tar during gasification:char as a catalyst or as a catalyst support for tar reforming[J]. Fuel, 2011,90(5):2545-2552.  

    17. [17]

      MIN Z H, ASADULLAH M, PIYACHAT Y, ZHANG S, WU H, LI C Z. Catalytic reforming of tar during gasification. Part Ⅰ. Steam reforming of biomass tar using ilmenite as a catalyst[J]. Fuel, 2011,90:1847-1854. doi: 10.1016/j.fuel.2010.12.039

    18. [18]

      KEOWN D M, HAYASHI J I, LI C Z. Drastic changes in biomass char structure and reactivity upon contact with steam[J]. Fuel, 2008,87:1127-1132. doi: 10.1016/j.fuel.2007.05.057

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    4. [4]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    5. [5]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    6. [6]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    7. [7]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    8. [8]

      Haiyu ZhuZhuoqun WenWen XiongXingzhan WeiZhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-0. doi: 10.1016/j.actphy.2025.100078

    9. [9]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

    10. [10]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    11. [11]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

    12. [12]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    13. [13]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    14. [14]

      Hao Ren Wen Zhao Fangna Dai Wenyue Guo . Finite Difference Solution of One-Dimensional Quantum Systems: (1) Fundamental Concepts and Infinite Square Well. University Chemistry, 2025, 40(3): 124-131. doi: 10.12461/PKU.DXHX202405145

    15. [15]

      Yujing Chen Hongqun Ouyang Dan Zhao Yanyan Chu Zhengping Qiao . Recommendations for the Content and Instruction of the Physical Chemistry Experiment “Construction of Ternary Liquid-Liquid Phase Diagrams”. University Chemistry, 2025, 40(7): 359-366. doi: 10.12461/PKU.DXHX202409120

    16. [16]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    17. [17]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    18. [18]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    19. [19]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    20. [20]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

Metrics
  • PDF Downloads(1)
  • Abstract views(1367)
  • HTML views(155)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return