Citation: CHEN Zong-ding, WANG Yong-gang, XU De-ping, XU Xiu-qiang. Changes in char properties after catalytic reforming volatiles from pyrolysis of brown coal[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(8): 908-915. shu

Changes in char properties after catalytic reforming volatiles from pyrolysis of brown coal

  • Corresponding author: WANG Yong-gang, wyg1960@126.com
  • Received Date: 13 February 2017
    Revised Date: 2 May 2017

    Fund Project: The project was supported by the 12th Five-Year Plan of National Science and Technology Support (2012BAA04B02)The project was supported by the 12th Five-Year Plan of National Science and Technology Support 2012BAA04B02

Figures(10)

  • To decrease tar yield and thus improving gasification efficiency, tar from pyrolysis of Shengli brown coal was catalytically reformed in situ in a two-stage quartz reactor using char (as catalyst) prepared from the pyrolysis of same coal. The properties of char catalysts before and after reactions were analyzed and compared. The results show that the mass of char generally decreases after the reforming reactions, which means that char is a kind of consumptive catalyst. The maximum reduction in specific surface area after reactions is from 422 to 231.8 m2/g. Results from Raman spectroscopy show that the O-containing functional groups, as well as the ratio of small aromatic rings (3-5 aromatic rings) to big aromatic rings (more than 5 aromatic rings) in char, decrease after the reactions. Besides, it appears that during the interaction between char and volatile, char from fast-heating pyrolysis mainly cracks the volatiles into small-molecule gases, while char from slow-heating pyrolysis removes the volatiles by coking on its surface.
  • 加载中
    1. [1]

      WANG L, WU C, ZHAO Z. Effect of char on catalytic cracking of tar from biomass gasification with toluene as a model compound[J]. Acta Energi Sin, 2006,27(5):514-518.  

    2. [2]

      WANG F J, ZHANG S, CHEN Z D, LIU C, WANG Y G. Tar reforming using char as catalyst during pyrolysis and gasification of Shengli brown coal[J]. J Anal Appl Pyrolysis, 2014,105:269-275. doi: 10.1016/j.jaap.2013.11.013

    3. [3]

      ABU E Z, BRAMER E A, BREM G. Experimental comparison of biomass chars with other catalysts for tar reduction[J]. Fuel, 2008,87:2243-2252. doi: 10.1016/j.fuel.2008.01.004

    4. [4]

      BRANDT P, LARSEN E, HENRIKSEN U. High tar reduction in a two-stage gasifier[J]. Energy Fuels, 2000,14:816-824. doi: 10.1021/ef990182m

    5. [5]

      ASADULLAH M, ZHANG S, MIN Z H, YIMSIRI P, LI C Z. Effects of biomass char structure on its gasification reactivity[J]. Bioresour Technol, 2010,101:7935-7943. doi: 10.1016/j.biortech.2010.05.048

    6. [6]

      YOU Zhan-ping. Research on catalytic reforming of tar from pyrolysis using biomass char as catalyst[D]. Tianjin: Tianjin University, 2010. 

    7. [7]

      SONG Y, WANG Y, HU X, XIANG J, HU S, MOURANT D, LI T T, WU L P, LI C Z. Effect of volatile-char interaction on in situ destruction of nascent tar during the pyrolysis and gasification of biomass. Part 1. Roles of nascent char[J]. Fuel, 2014,122:60-66. doi: 10.1016/j.fuel.2014.01.002

    8. [8]

      CHEN Zong-ding, ZHANG Shu, WANG Fang-jie, JIA Xiao-lu, XU De-ping, WANG Yong-gang. Study on in-situ catalytic reforming of coal tar from pyrolysis of brown coal by activated and inactivated char[J]. Coal Sci Technol, 2014,11:105-110.  

    9. [9]

      ZHANG S, MIN Z H, TAY H L, ASADULLAH M, LI C Z. Effects of volatile-char interactions on the evolution of char structure during the gasification of Victorian brown coal in steam[J]. Fuel, 2011,90:1529-1535. doi: 10.1016/j.fuel.2010.11.010

    10. [10]

      XU Xiu-qiang, WANG Yong-gang, CHEN Zong-ding, BAI Lei, ZHANG Kun-jun, YANG Sa-sha, ZHANG Shu. Influence of cooling treatments on char microstructure and reactivity of Shengli brown coal[J]. J Fuel Chem Technol, 2015,43(1):1-8.  

    11. [11]

      XU Xiu-qiang, WANG Yong-gang, ZHANG Shu, CHEN Zong-ding, CHEN Xu-jun, HE Xin. Evolution behavior of reactivity and micro-structure of lignite char during in-situ gasification with steam[J]. J Fuel Chem Technol, 2015,03:273-280. doi: 10.3969/j.issn.0253-2409.2015.03.004 

    12. [12]

      XU Xiu-qiang, WANG Yong-gang, CHEN Guo-peng, CHEN Zong-ding, QIN Zhong-yu, DAI Jin-ze, ZHANG Shu, XU De-ping. Effects of steam on the reactivity and microstructure of char from in-situ gasification of brown coal[J]. J Fuel Chem Technol, 2015,43(5):546-553.  

    13. [13]

      MIN Z H, ZHANG S, YIMSIRI P, WAGN Y, ASADULLAH M, LI C Z. Catalytic reforming of tar during gasification. Part Ⅳ. Changes in the structure of char in the char-supported iron catalyst during reforming[J]. Fuel, 2013,106:858-863. doi: 10.1016/j.fuel.2012.11.063

    14. [14]

      LIU S Y, WANG Y, WU R C, ZENG X, GAO S Q, XU G W. Fundamentals of catalytic tar removal over in situ and ex situ chars in two-stage gasification of coal[J]. Energy Fuels, 2014:58-66.  

    15. [15]

      LIU Shu-yuan, WANG Yin, WU Rong-cheng, ZENG Xi, XU Guang-wen. Research on coal tar catalytic cracking over hot in-situ chars[J]. J Fuel Chem Technol, 2013,41(9):1041-1049.  

    16. [16]

      MIN Z H, YIMSIR P, ASADULLAH M, ZHANG S, LI C Z. Catalytic reforming of tar during gasification:char as a catalyst or as a catalyst support for tar reforming[J]. Fuel, 2011,90(5):2545-2552.  

    17. [17]

      MIN Z H, ASADULLAH M, PIYACHAT Y, ZHANG S, WU H, LI C Z. Catalytic reforming of tar during gasification. Part Ⅰ. Steam reforming of biomass tar using ilmenite as a catalyst[J]. Fuel, 2011,90:1847-1854. doi: 10.1016/j.fuel.2010.12.039

    18. [18]

      KEOWN D M, HAYASHI J I, LI C Z. Drastic changes in biomass char structure and reactivity upon contact with steam[J]. Fuel, 2008,87:1127-1132. doi: 10.1016/j.fuel.2007.05.057

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Chenye An Abiduweili Sikandaier Xue Guo Yukun Zhu Hua Tang Dongjiang Yang . 红磷纳米颗粒嵌入花状CeO2分级S型异质结高效光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-. doi: 10.3866/PKU.WHXB202405019

    4. [4]

      Xue Liu Lipeng Wang Luling Li Kai Wang Wenju Liu Biao Hu Daofan Cao Fenghao Jiang Junguo Li Ke Liu . Cu基和Pt基甲醇水蒸气重整制氢催化剂研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-. doi: 10.1016/j.actphy.2025.100049

    5. [5]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    6. [6]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    7. [7]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    8. [8]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    9. [9]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    10. [10]

      Hao Ren Wen Zhao Fangna Dai Wenyue Guo . Finite Difference Solution of One-Dimensional Quantum Systems: (1) Fundamental Concepts and Infinite Square Well. University Chemistry, 2025, 40(3): 124-131. doi: 10.12461/PKU.DXHX202405145

    11. [11]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    12. [12]

      Jia Huo Jia Li Yongjun Li Yuzhi Wang . Ideological and Political Design of Physical Chemistry Teaching: Chemical Potential of Any Component in an Ideal-Dilute Solution. University Chemistry, 2024, 39(2): 14-20. doi: 10.3866/PKU.DXHX202307075

    13. [13]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    14. [14]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    15. [15]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    16. [16]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    17. [17]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    18. [18]

      Jiatong Hu Qiyi Wang Ruiwen Tang Jiajing Feng . Photocatalytic Journey of Perylene Diimides in a Competitive Arena. University Chemistry, 2025, 40(5): 328-333. doi: 10.12461/PKU.DXHX202407015

    19. [19]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    20. [20]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

Metrics
  • PDF Downloads(1)
  • Abstract views(1314)
  • HTML views(151)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return