Citation: Wang Huan, Shang Luoran, Rong Fei, Gu Zhongze, Zhao Yuanjin. Colloidal Crystal Beads with Biomedical Applications[J]. Chemistry, ;2017, 80(3): 219-227. shu

Colloidal Crystal Beads with Biomedical Applications

  • Corresponding author: Zhao Yuanjin, yjzhao@seu.edu.cn
  • Received Date: 16 October 2016
    Accepted Date: 20 November 2016

Figures(12)

  • Colloidal photonic crystals (PhCs) are periodically arranged monodisperse nanoparticles and have photonic band gaps (PBGs). Light with certain wavelength or frequencies located in the PBG is prohibited from propagating. Because of this special property, the fabrication and application of colloidal PhCs have attracted increasing interests of researchers. However, the angle dependence is disadvantageous for the construction of some optical materials and devices in which wide viewing angles are desired. Recently, a series of colloidal PhC materials with spherical macroscopic morphology have been created. Because of their spherical symmetry, the PBGs of spherical colloidal PhCs are independent of rotation under illumination of the surface at a fixed incident angle of the light, broadening the perspective of their applications. Because microfluidics has been used for the generation of the droplet templates, the development of spherical colloidal PhCs has progressed significantly. These new strategies not only ensure monodispersity, but also increase the structural and functional diversity of the PhC beads (PCBs). These novel PCBs provide a bridge between PhCs materials and biomedical applications such as barcodes, label-free detection, cell culture and drug delivery, and this also leads PCBs to far-ranging real-world applications. In this review, we present the research progress in PCBs, including their design, preparation and potential applications. Future developments of the PCB materials are also envisioned.
  • 加载中
    1. [1]

      E Yablonovitch. Phys. Rev. Lett., 1987, 58(20):2059-2062. 

    2. [2]

      S John. Phys. Rev. Lett., 1987, 58(23):2486-2489. 

    3. [3]

      G Freymann, V Kitaev, B V Lotsch et al. Chem. Soc. Rev., 2013, 42(7):2528-2554. 

    4. [4]

      Y Z Zhang, J X Wang, Y Huang et al. J. Mater. Chem., 2011, 21(37):14113-14126. 

    5. [5]

      J X Wang, Y Z Zhang, S T Wang et al. Acc. Chem. Res., 2011, 44(6):405-415. 

    6. [6]

      L He, M S Wang, J P Ge et al. Acc. Chem. Res., 2012, 45(9):1431-1440. 

    7. [7]

      O Sato, S Kubo, Z Z Gu. Acc. Chem. Res., 2009, 42(1):1-10. 

    8. [8]

      Y J Zhao, Z Y Xie, H C Gu et al. Chem. Soc. Rev., 2012, 41(8):3297-3317. 

    9. [9]

      S H Park, Y Xia. Langmuir, 1999, 15(1):266-273. 

    10. [10]

      Z Z Gu, Q B Meng, S Hayami et al. J. Appl. Phys., 2001, 90(4):2042-2044. 

    11. [11]

      H C Gu, Y J Zhao, Y Cheng et al. Small, 2013, 9(13):2266-2271. 

    12. [12]

      O D Velev, A M Lenhoff, E W Kaler. Science, 2000, 287(5461):2240-2243. 

    13. [13]

      O D Velev, S Gupta. Adv. Mater., 2009, 21(19):1897-1905. 

    14. [14]

      H Wang, Q H Xu, L R Shang et al. Chem. Commun., 2016, 52(16):3296-3299. 

    15. [15]

      X W Zhao, Y Cao, F Ito et al. Angew. Chem. Int. Ed., 2006, 45(41):6835-6838. 

    16. [16]

      V Rastogi, S Melle, O G Calderon et al. Adv. Mater., 2008, 20(22):4263-4268. 

    17. [17]

      Y Masuda, T Itoh, K Koumoto, Adv. Mater., 2005, 17(7):841-845.

    18. [18]

      C Sun, X W Zhao, Y J Zhao et al. Small, 2008, 4(5):592-596. 

    19. [19]

      H C Gu, F Rong, B C Tang et al. Langmuir, 2013, 29(25):7576-7582. 

    20. [20]

      S H Kim, S Y Lee, G R Yi et al. J. Am. Chem. Soc., 2006, 128(33):10897-10904. 

    21. [21]

      K Xu, J H Xu, Y C Lu et al. Cryst. Growth Des., 2013, 13(2):926-935. 

    22. [22]

      Y J Zhao, X W Zhao, C Sun et al. Anal. Chem., 2008, 80(5):1598-1605. 

    23. [23]

      J Hu, X W Zhao, Y J Zhao et al. J. Mater. Chem., 2009, 19(32):5730-5736. 

    24. [24]

      J P Ge, H Lee, L He et al. J. Am. Chem. Soc., 2009, 131(43):15687-15694. 

    25. [25]

      T Kanai, D Lee, H C Shum et al. Small, 2010, 6(7):807-810. 

    26. [26]

      S H Kim, S J Jeon, G R Yi et al. Adv. Mater., 2008, 20(9):1649-1655. 

    27. [27]

      Y J Zhao, L R Shang, Y Cheng et al. Acc. Chem. Res., 2014, 47(12):3632-3642. 

    28. [28]

      Y J Zhao, X W Zhao, B C Tang et al. Adv. Funct. Mater., 2010, 20(6):976-982. 

    29. [29]

      Y C Kim, C Y Cho, J H Kang et al. Langmuir, 2012, 28(28):10543-10550. 

    30. [30]

      J Y Wang, Y D Hu, R Deng et al. Langmuir, 2013, 29(28):8825-8834. 

    31. [31]

      J C Cui, W Zhu, N Gao et al. Angew. Chem. Int. Ed., 2014, 53(15):3844-3848. 

    32. [32]

      Y J Zhao, X W Zhao, B C Tang et al. Langmuir, 2010, 26(9):6111-6114. 

    33. [33]

      G R Yi, J H Moon, S M Yang. Chem. Mater., 2001, 13(8):2613-2618. 

    34. [34]

      J H Moon, G R Yi, S M Yang et al. Adv. Mater., 2004, 16(7):605-609. 

    35. [35]

      Y J Zhao, X W Zhao, J Hu et al. Adv. Mater., 2009, 21(5):569-572. 

    36. [36]

      Q Yang, M Z Li, J Liu et al. J. Mater. Chem. A, 2013, 1(3):541-547. 

    37. [37]

      S H Hong, J H Moon, J M Lim et al. Langmuir, 2005, 21(23):10416-10421. 

    38. [38]

      J R Millman, K H Bhatt, B G Prevo et al. Nat. Mater., 2005, 4(1):98-102.

    39. [39]

      V Rastogi, A A Garcıa, M Marquez et al. Macromol. Rapid Commun., 2010, 31(2):190-195.

    40. [40]

      L R Shang, F Q Shangguan, Y Cheng et al. Nanoscale, 2013, 5(20):9553-9557. 

    41. [41]

      Y J Zhao, H C Gu, Z Y Xie et al. J. Am. Chem. Soc., 2013, 135(1):54-57. 

    42. [42]

      Z Y Yu, C F Wang, L T Ling et al. Angew. Chem. Int. Ed., 2012, 51(10):2375-2378. 

    43. [43]

      S H Kim, S J Jeon, W C Jeong et al. Adv. Mater., 2008, 20(21):4129-4134.

    44. [44]

      Y J Zhao, Z Y Xie, H C Gu et al. NPG Asia Mater., 2012, 4(9):e25.

    45. [45]

      S H Kim, S J Jeon, S M Yang. J. Am. Chem. Soc., 2008, 130(18):6040-6046. 

    46. [46]

      S H Kim, J G Park, T M Choi et al. Nat. Commun., 2014, 5:3068.

    47. [47]

      Y D Hu, J Y Wang, H Wang et al. Langmuir, 2012, 28(49):17186-17192. 

    48. [48]

      T Kanai, D Lee, H C Shum et al. Adv. Mater., 2010, 22(44):4998-5002. 

    49. [49]

      F F Fu, L R Shang, F Y Zheng et al. ACS Appl. Mater. Inter., 2016, 8(22):13840-13848. 

    50. [50]

      B F Ye, H B Ding, Y Cheng et al. Adv. Mater., 2014, 26(20):3270-3274. 

    51. [51]

      L R Shang, Y Cheng, J Wang et al. Lab Chip, 2016, 16(2):251-255. 

    52. [52]

      L R Shang, F F Fu, Y Cheng et al. J. Am. Chem. Soc., 2015, 137(49):15533-15539. 

    53. [53]

      D G Shchukin, E Skorb, V Belova et al. Adv. Mater., 2011, 23(17):1922-1934. 

    54. [54]

      S A Nabavi, G T Vladisavljevic, S Gu et al. Langmuir, 2016, 32(38):9826-9835. 

    55. [55]

      K Ando, A Q Liu, C D Ohl. Phys. Rev. Lett., 2012, 109(4):044501. 

    56. [56]

      O Vincent, P Marmottant, S R Gonzalez-Avila et al. Soft Matter, 2014, 10(10):1455-1461. 

    57. [57]

      Y J Zhao, X W Zhao, Z Z Gu. Adv. Funct. Mater., 2010, 20(18):2970-2988. 

    58. [58]

      Y J Zhao, X W Zhao, X P Pei et al. Anal. Chim. Acta, 2009, 633(1):103-108. 

    59. [59]

      Z Y Xie, K D Cao, Y J Zhao et al. Adv. Mater., 2014, 26(15):2413-2418. 

    60. [60]

      Y J Zhao, X W Zhao, J Hu et al. Angew. Chem. Int. Ed., 2009, 48(40):7350-7352. 

    61. [61]

      J P Ge, Y D Yin. Angew. Chem. Int. Ed., 2011, 50(7):1492-1522. 

    62. [62]

      W Z Shen, M Z Li, C Q Ye et al. Lab Chip, 2012, 12(17):3089-3095. 

    63. [63]

      B F Ye, F Rong, H C Gu et al. Chem. Commun., 2013, 49(46):5331-5333. 

    64. [64]

      W Liu, L R Shang, F Y Zheng et al. Small, 2014, 10(1):88-93. 

    65. [65]

      F Y Zheng, Y Cheng, J Wang et al. Adv. Mater., 2014, 26(43):7333-7338. 

    66. [66]

      B Zhang, Y L Cai, L R Shang et al. Nanoscale, 2016, 8(6):3841-3847. 

    67. [67]

      B Zhang, Y Cheng, H Wang et al. Nanoscale, 2015, 7(24):10590-10594. 

  • 加载中
    1. [1]

      Xiaojun LiuLang QinYanlei Yu . Dynamic Manipulation of Photonic Bandgaps in Cholesteric Liquid Crystal Microdroplets for Applications. Acta Physico-Chimica Sinica, 2024, 40(5): 2305018-0. doi: 10.3866/PKU.WHXB202305018

    2. [2]

      Min Gu Huiwen Xiong Liling Liu Jilie Kong Xueen Fang . Rapid Quantitative Detection of Procalcitonin by Microfluidics: An Instrumental Analytical Chemistry Experiment. University Chemistry, 2024, 39(4): 87-93. doi: 10.3866/PKU.DXHX202310120

    3. [3]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    4. [4]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    5. [5]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    6. [6]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    7. [7]

      Xiutao XuChunfeng ShaoJinfeng ZhangZhongliao WangKai Dai . Rational Design of S-Scheme CeO2/Bi2MoO6 Microsphere Heterojunction for Efficient Photocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309031-0. doi: 10.3866/PKU.WHXB202309031

    8. [8]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    9. [9]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    10. [10]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    11. [11]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    12. [12]

      Jiamin Zhang Zhen Fan Jianzhong Du . Integrated Teaching Method Combining Domestic and International Perspectives: A Case Study on Cultivating Innovative Talents in Polymeric Biomaterials. University Chemistry, 2025, 40(7): 156-160. doi: 10.12461/PKU.DXHX202409131

    13. [13]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    14. [14]

      Yang MeiqingLu WangHaozi LuYaocheng YangSong Liu . Recent Advances of Functional Nanomaterials for Screen-Printed Photoelectrochemical Biosensors. Acta Physico-Chimica Sinica, 2025, 41(2): 2310046-0. doi: 10.3866/PKU.WHXB202310046

    15. [15]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    16. [16]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    17. [17]

      Yan Wang Haolong Li Chengji Zhao Zheng Chen Quan Lin Yupeng Guo Jianxin Mu Kun Liu Zhong-Yuan Lu Junqi Sun . Construction Practice of the National First-Class Undergraduate Major in Polymer Materials and Engineering at Jilin University. University Chemistry, 2025, 40(4): 46-53. doi: 10.12461/PKU.DXHX202403083

    18. [18]

      Xuejun Lai Anqiang Zhang Tao Wang Shuizhu Wu Guangzhao Zhang . Construction and Practice of the First-Class Undergraduate Education Program for Polymer Materials and Engineering Major Students with “Solid Foundation, Strong Capability and High Potential”. University Chemistry, 2025, 40(4): 119-125. doi: 10.12461/PKU.DXHX202407012

    19. [19]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    20. [20]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

Metrics
  • PDF Downloads(63)
  • Abstract views(7593)
  • HTML views(1690)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return