Citation: ZOU Xiao-peng, SHENG Yu-jing, LU Hai-feng, GUO Xiao-lei, GUO Qing-hua, GONG Xin. Effect of particle size on gasification of char with different coal ranks[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(4): 408-417. shu

Effect of particle size on gasification of char with different coal ranks

  • Corresponding author: GONG Xin, gongxin@ecust.edu.cn
  • Received Date: 7 December 2016
    Revised Date: 13 February 2017

    Fund Project: Sinopec Scientific and Technological Development Projects 415022the Fundamental Research Funds for the Central Universities 222201414030

Figures(7)

  • Eight coal chars of different coal ranks were prepared to investigate the effects of coal rank, reaction temperature and particle size on char-CO2 gasification using a thermogravimetric analyzer (TGA). The variation of char-CO2 gasification rate with carbon conversion was studied, especially at high conversion stage. As a result, the crystalline structures of higher rank chars are more orderly, resulting in a lower gasification rate. For high rank coals like anthracite, the CO2 gasification rate of char with 40 μm size is about 7 times higher than that with 300 μm size to reach 95% conversion at 1 300℃. For low rank coals, particle size has little effect on the gasification rate. The results indicate that the effect of particle size on char-CO2 gasification is dependent on coal rank. The specific surface area of high rank coals is much smaller than that of low rank coals, which contributes to the significant effect of particle size on high rank coal gasification. The effect of gasification temperature and particle size on gasification rate for high rank coals is more significant than that for low rank coals.
  • 加载中
    1. [1]

      FUNG D P C, KIM S D. Laboratory gasification study of Canadian coals:2. Chemical reactivity and coal rank[J]. Fuel, 1983,62(11):1337-1340. doi: 10.1016/S0016-2361(83)80020-9

    2. [2]

      MIURA K, HASHIMOTO K, SILVESTON P L. Factors affecting the reactivity of coal chars during gasification, and indices representing reactivity[J]. Fuel, 1989,68(11):1461-1475. doi: 10.1016/0016-2361(89)90046-X

    3. [3]

      ZHANG L X, HUANG J J, FANG Y T, WANG Y. Gasification reactivity and kinetics of typical Chinese anthracite chars with steam and CO2[J]. Energy Fuels, 2006,20(3):1201-1210. doi: 10.1021/ef050343o

    4. [4]

      XIANG Yin-hua, WANG Yang, ZHANG Jian-min, ZHANG Shou-yu, FANG Yi-tian, DONG Zhong-bing. Kinetic on steam gasification of partially gasified char[J]. J Chem Ind Eng (China), 2003,54(3):368-373.  

    5. [5]

      LIU H, LUO C, KATO S, UEMIYA S, KANEKO M, KOJIMA T. Kinetics of CO2/Char gasification at elevated temperatures:Part I:Experimental results[J]. Fuel Process Technol, 2006,87:775-781. doi: 10.1016/j.fuproc.2006.02.006

    6. [6]

      KOVACIK G, CHAMBERS A, ÖZÜM B. CO2 gasification kinetics of two Alberta coal chars[J]. Can J Chem Eng, 1991,69(3):811-815. doi: 10.1002/cjce.v69:3

    7. [7]

      LIN Shan-jun, ZHOU Zhi-jie, HUO Wei, DING Lu, YU Guang-suo. Effect of internal diffusion on steam gasification reactivity of coal and petroleum coke[J]. J Fuel Chem Technol, 2014,42(8):905-912.  

    8. [8]

      HUO W, ZHOU Z J, WANG F C, WANG Y F, YU G S. Experimental study of pore diffusion effect on char gasification with CO2 and steam[J]. Fuel, 2014,131:59-65. doi: 10.1016/j.fuel.2014.04.058

    9. [9]

      MATSUI I, KUNII D, FURUSAWA T. Study of char gasification by carbon dioxide 1. Kinetic study by thermogravimetric analysis[J]. Ind Eng Chem Res, 1987,26(1):91-95. doi: 10.1021/ie00061a017

    10. [10]

      YONG T K, DONG K S, JUNGHO H. Study of the effect of coal type and particle size on Char-CO2 gasification via gas analysis[J]. Energy Fuels, 2011,25:5044-5054. doi: 10.1021/ef200745x

    11. [11]

      TAKARADA T, TAMAI Y, TOMITA A. Reactivities of 34 coals under steam gasification[J]. Fuel, 1985,64(10):1438-1442. doi: 10.1016/0016-2361(85)90347-3

    12. [12]

      LU Hou-gen. Introduction to Powder Technology[M]. Shanghai:Tongji University Press, 1993.

    13. [13]

      WANG Fang, ZENG Xi, WANG Yong-gang, YU Jian, YUE Jun-rong, ZHANG Jian-ling, XU Guang-wen. Comparation of non-isothermal coal char gasification in micro fluidized bed and hermogravimetric analyzer[J]. J Chem Ind Eng (China), 2015,66(5):1716-1722.  

    14. [14]

      FENG B, BHATIA S K, BARRY J C. Variation of the crystalline structure of coal char during gasification[J]. Energy Fuels, 2003,17(3):744-754. doi: 10.1021/ef0202541

    15. [15]

      DING L U, ZHOU Z J, GUO Q H, WANG Y F, YU G S. In situ analysis and mechanism study of char-ash/slag transition in pulverized coal gasification[J]. Energy Fuels, 2015,29(6):3532-3544. doi: 10.1021/acs.energyfuels.5b00322

    16. [16]

      PAN Zong-lin, LI Han-xu, ZHANG Song, ZHANG Rui, LIU Ming, QIAN Ning-bo. Catalytic gasification of Huainan coal by using Fe2O3 as catalysts and effect of SiO2 and Al2O3 on catalytic gasification[J]. Coal Technol, 2015,34(3):301-303.  

    17. [17]

      ÖZTAS N A, YÜRÜM Y. Pyrolysis of turkish zonguldak bituminous coal. Part 1. Effect of mineral matter[J]. Fuel, 2000,79(10):1221-1227. doi: 10.1016/S0016-2361(99)00255-0

    18. [18]

      CHEN Lu, ZHOU Zhi-jie, LIU Xin, YUAN Shuai, WANG Fu-chen. Effect of microstructure of rapid pyrolysis char on its gasification reactivity[J]. J Fuel Chem Technol, 2012,40(6):648-654.  

    19. [19]

      HUO W, ZHOU Z J, CHEN X L, DAI Z H, YU G S. Study on CO2 gasification reactivity and physical characteristics of biomass, petroleum coke and coal chars[J]. Bioresour Technol, 2014,159:143-149. doi: 10.1016/j.biortech.2014.02.117

    20. [20]

      YE D P, AGNEW J B, ZHANG D K. Gasification of a South Australian low-rank coal with carbon dioxide and steam:Kinetics and reactivity studies[J]. Fuel, 1998,77(11):1209-1219. doi: 10.1016/S0016-2361(98)00014-3

    21. [21]

      SHEN Jun, WANG Zhi-zhong. Study on variation of micro-pores ( < 100 nm) and volatile components of different rank coals during carbonization[J]. J China Coal Soc, 2007,32(6):626-629.  

  • 加载中
    1. [1]

      Haiyu Nie Chenhui Zhang Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055

    2. [2]

      Hong Dong Feng-Ming Zhang . Covalent organic frameworks for artificial photosynthetic diluted CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(7): 100307-100307. doi: 10.1016/j.cjsc.2024.100307

    3. [3]

      Ping Wang Tianbao Zhang Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328

    4. [4]

      Muhammad Humayun Mohamed Bououdina Abbas Khan Sajjad Ali Chundong Wang . Designing single atom catalysts for exceptional electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(1): 100193-100193. doi: 10.1016/j.cjsc.2023.100193

    5. [5]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Linlu BaiWensen LiXiaoyu ChuHaochun YinYang QuEkaterina KozlovaZhao-Di YangLiqiang Jing . Effects of nanosized Au on the interface of zinc phthalocyanine/TiO2 for CO2 photoreduction. Chinese Chemical Letters, 2025, 36(2): 109931-. doi: 10.1016/j.cclet.2024.109931

    8. [8]

      Xiang-Da ZhangJian-Mei HuangXiaorong ZhuChang LiuYue YinJia-Yi HuangYafei LiZhi-Yuan Gu . Auto-tandem CO2 reduction by reconstructed Cu imidazole framework isomers: Unveiling pristine MOF-mediated CO2 activation. Chinese Chemical Letters, 2025, 36(5): 109937-. doi: 10.1016/j.cclet.2024.109937

    9. [9]

      Shu-Ran Xu Fang-Xing Xiao . Metal halide perovskites quantum dots: Synthesis, and modification strategies for solar CO2 conversion. Chinese Journal of Structural Chemistry, 2023, 42(12): 100173-100173. doi: 10.1016/j.cjsc.2023.100173

    10. [10]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    11. [11]

      Yufei Jia Fei Li Ke Fan . Surface reconstruction of Cu-based bimetallic catalysts for electrochemical CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100255-100255. doi: 10.1016/j.cjsc.2024.100255

    12. [12]

      Ziruo Zhou Wenyu Guo Tingyu Yang Dandan Zheng Yuanxing Fang Xiahui Lin Yidong Hou Guigang Zhang Sibo Wang . Defect and nanostructure engineering of polymeric carbon nitride for visible-light-driven CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(3): 100245-100245. doi: 10.1016/j.cjsc.2024.100245

    13. [13]

      Qin ChengMing HuangQingqing YeBangwei DengFan Dong . Indium-based electrocatalysts for CO2 reduction to C1 products. Chinese Chemical Letters, 2024, 35(6): 109112-. doi: 10.1016/j.cclet.2023.109112

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Tian-Yu GaoXiao-Yan MoShu-Rong ZhangYuan-Xu JiangShu-Ping LuoJian-Heng YeDa-Gang Yu . Visible-light photoredox-catalyzed carboxylation of aryl epoxides with CO2. Chinese Chemical Letters, 2024, 35(7): 109364-. doi: 10.1016/j.cclet.2023.109364

    16. [16]

      Xueyang ZhaoBangwei DengHongtao XieYizhao LiQingqing YeFan Dong . Recent process in developing advanced heterogeneous diatomic-site metal catalysts for electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(7): 109139-. doi: 10.1016/j.cclet.2023.109139

    17. [17]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    18. [18]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    19. [19]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    20. [20]

      Yuhao Guo Na Li Tingjiang Yan . Tandem catalysis for photoreduction of CO2 into multi-carbon fuels on atomically thin dual-metal phosphochalcogenides. Chinese Journal of Structural Chemistry, 2024, 43(7): 100320-100320. doi: 10.1016/j.cjsc.2024.100320

Metrics
  • PDF Downloads(0)
  • Abstract views(997)
  • HTML views(152)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return