Citation: ZHU Zi-wen, ZHENG Qing-rong, CHEN Wu, WANG Ze-hao, ZHANG Wei-dong. Analysis of the hydrogen adsorption behavior on the typical adsorbing materials[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(5): 625-632. shu

Analysis of the hydrogen adsorption behavior on the typical adsorbing materials

  • Corresponding author: ZHENG Qing-rong, qrzheng816@sina.com
  • Received Date: 14 January 2018
    Revised Date: 11 March 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (51679107) and Science and Technology Bureau of Xiame (3502Z20173026)the National Natural Science Foundation of China 51679107Science and Technology Bureau of Xiame 3502Z20173026

Figures(7)

  • For comparing the effects of the structural properties of adsorbents on the capability for hydrogen storage, three kinds of adsorbents, including activated carbon, graphene sheets (GF) and metal-organic frameworks (MOFs), were synthesized and undertaken adsorption equilibrium tests of hydrogen at temperature of liquid nitrogen. The structural characterization of the prepared samples were firstly conducted employing Micromeritics 3Flex for the adsorption data of nitrogen at 77 K. Then, the adsorption equilibrium tests of hydrogen on those adsorbents had been respectively measured under low pressure of 0-0.1 MPa at temperature of 77-87 K and under high pressure of 0.1-8 MPa at 77 K. Lastly, the relationships of the hydrogen uptake and the structural properties of the adsorbents were analyzed. Results show that the hydrogen uptake of the physical absorbents is mainly affected by the micro-pores with pore size less than 1nm under low pressure, but under high pressure, the maximum amount of excess hydrogen adsorption on the porous material is positively correlated with the BET specific surface area of the material, and the slope is 0.0059 mmol/m2.
  • 加载中
    1. [1]

      AHLUWALIA R K, PENG J K. Automotive hydrogen storage system using cryo-adsorption on activated carbon[J]. Int J Hydrogen Energy, 2009,34(13):5476-87. doi: 10.1016/j.ijhydene.2009.05.023

    2. [2]

      SCHLICHTENMAYER M, HIRSCHER M. The usable capacity of porous materials for hydrogen storage[J]. Appl Phys A-Mater, 2016,122(4)379. doi: 10.1007/s00339-016-9864-6

    3. [3]

      CHENG D W, TE H F, LO J Y. Effects of pressure, temperature, and geometric structure of pillared graphene on hydrogen storage capacity[J]. Int J Hydrogen Energy, 2012,37(19):14211-14216. doi: 10.1016/j.ijhydene.2012.07.040

    4. [4]

      SRINIVAS G, ZHU Y, PINER R, SKIPPER N, ELLERBY M, RUOFF R. Synthesis of graphene-like nanosheets and their hydrogen adsorption capacity[J]. Carbon, 2010,48(3):630-635. doi: 10.1016/j.carbon.2009.10.003

    5. [5]

      ZHENG Q, JI X, GAO S, WANG X. Analysis of adsorption equilibrium of hydrogen on graphene sheets[J]. Int J Hydrogen Energy, 2013,38(25):10896-10902. doi: 10.1016/j.ijhydene.2013.01.098

    6. [6]

      YUAN Wen-hui, LIU Xiao-chen, GU Ye-jian, ZHAN Liang, LI Bao-qing, LI li. Preparation of high hydrogen storage capacity graphene based on low-temperature exfoliation under high vacuum[J]. J Functional Mater, 2013,44(1):17-21.  

    7. [7]

      ROSI N L, ECKER J, EDDAOUDI M, VODAK D, KIM J, O'KEEFFE M, YAGHI O M. Hydrogen storage in microporous metal-organic frameworks[J]. Science, 2003,300(5622):1127-1129. doi: 10.1126/science.1083440

    8. [8]

      Hydrogen storage engineering center of excellence (HSCoE)[OL]. https://www.hydrogen.energy.gov/pdfs/progress14/iv_b_1_anton_2014.pdf.

    9. [9]

      HWANG H T, VARMA A. Hydrogen storage for fuel cell vehicles[J]. Curr Opin Chem Eng, 2014,5:42-48. doi: 10.1016/j.coche.2014.04.004

    10. [10]

      CHAHINEB R, RICHARDC M C, GARRISONA S, TAMBURELLOA D, COSSEMENTB D, ANTON D. Modeling of adsorbent based hydrogen storage systems[J]. Int J Hydrogen Energy, 2012,37(7):5691-5705. doi: 10.1016/j.ijhydene.2011.12.125

    11. [11]

      PUREWALAB J J, LIU D, YANG J, SUDIKA A, SIEGELB J, MAURERC S, MVLLERC U. Increased volumetric hydrogen uptake of MOF-5 by powder densification[J]. Int J Hydrogen Energy, 2012,37(3):2723-2727. doi: 10.1016/j.ijhydene.2011.03.002

    12. [12]

      YANG S J, JI H I, NISHIHARA H, JUNG H, LEE K, KYOTANI T. General relationship between hydrogen adsorption capacities at 77 and 298 K and pore characteristics of the porous adsorbents[J]. J Phys Chem C, 2012,116(19):10529-10540. doi: 10.1021/jp302304w

    13. [13]

      NOGUERA-DÍAZ A, BIMBO N, HOLYFIELD L T, AHMET I Y, TING V P, MAYS T J. Structure-property relationships in metal-organic frameworks for hydrogen storage[J]. Colloid Surface A, 2016,496(5):77-85.  

    14. [14]

      GÓMEZGUALDRÓN D A, COLÓN Y J, ZHANG X, WANG T C, CHEN Y S, HUPP J T. Evaluating topologically diverse metal-organic frameworks for cryo-adsorbed hydrogen storage[J]. Energy Environ Sci, 2016,9(10):3279-3289. doi: 10.1039/C6EE02104B

    15. [15]

      PETITPAS G, BÉNARD P, KLEBANOFF L E, XIAO J, ACEVES S. A comparative analysis of the cryo-compression and cryo-adsorption hydrogen storage methods[J]. Int J Hydrogen Energy, 2014,39(20):10564-10584. doi: 10.1016/j.ijhydene.2014.04.200

    16. [16]

      LV D, CHEN Y, LI Y, SHI R, WU H, SUN X. Efficient mechanochemical synthesis of MOF-5 for linear alkanes adsorption[J]. J Chem Eng Data, 2017,62(7):2030-2036. doi: 10.1021/acs.jced.7b00049

    17. [17]

      WANG Z, SUN L, XU F, ZHOU H, PENG X, SUN D. Nitrogen-doped porous carbons with high performance for hydrogen storage[J]. Int J Hydrogen Energy, 2016,41(20):8489-8497. doi: 10.1016/j.ijhydene.2016.03.023

    18. [18]

      ZHAO Zhen-xia. Preparation and CO2 premselectivity performance of metal organic framework (MOF-5) membrane[D]. Guangzhou: South China University of Technology, 2009.

    19. [19]

      LI Yu-jie, MIAO Jin-peng, SUN Xue-jiao, XIAO Jing, XIA Qi-bin, XI Hong-xia, LI Zhong. Mechano-chemical synthesis of HKUST-1 with high capacity of benzene adsorptiorption[J]. CIESC J, 2015,66(2):793-799. doi: 10.11949/j.issn.0438-1157.20141127

    20. [20]

      GUO Jin-tao, CHEN Yong, JING Yu, WANG Chong-qing, MA Zheng-fei. Synthesize material institut lavoisier-101(MIL-101) by acetate as mineralizer[J]. Chem J Chin Univ, 2012,33(4):668-672. doi: 10.3969/j.issn.0251-0790.2012.04.005

    21. [21]

      SUN Li-na, YI Zuo-juan, ZHANG Xiao-tong, SONG Li-juan, DUAN Lin-hai. Synthesis, characterization and hydrogen storage capacity of MIL-53[J]. J Petrochem Univ, 2010,23(1):39-42.  

    22. [22]

      LIU Ming-ming, LV Weng-miao, SHI Xiu-feng, FAN Bin-bin, LI Rui-feng. Characterization and catalytic performance of zeolitic imidazolate framework-8(ZIF-8) synthesized by different methods[J]. Chin J Inorg Chem, 2014,30(3):579-584.  

    23. [23]

      LI Yu-jie. The synthesis of CPLs and GO@MOF-5 composites and their adsorption/separation performance toward hydrocarbons[D]. Guangzhou: South China University of Technology, 2016.

    24. [24]

      ZHU Z W, ZHENG Q R, WANG Z H, TANG Z, CHEN W. Hydrogen adsorption on graphene sheets and nonporous graphitized thermal carbon black at low surface coverage[J]. Int J Hydrogen Energy, 2017,42(29):18465-18472. doi: 10.1016/j.ijhydene.2017.04.173

    25. [25]

      ZHU Zi-wen, FENG Yu-long, ZHENG Qing-rong. Methane adsorption on graphene sheets and activated carbon[J]. CIESC Journal, 2015,66(s2):244-249. doi: 10.11949/j.issn.0438-1157.20150685

    26. [26]

      SETHIA G, SAYARI A. Activated carbon with optimum pore size distribution for hydrogen storage[J]. Carbon, 2016,99:289-294. doi: 10.1016/j.carbon.2015.12.032

    27. [27]

      GAO Shuai, ZHENG Qing-rong. Comparisons of adsorption models for methane adsorption equilibrium on activated carbon[J]. J Chem Technol, 2013,41(3):380-384.  

    28. [28]

      SANG S H, MENDOZA-CORTES J L, GODDARD W A I. Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks[J]. Chem Soc Rev, 2009,38(5):1460-76. doi: 10.1039/b802430h

  • 加载中
    1. [1]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    2. [2]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    3. [3]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    4. [4]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    5. [5]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    6. [6]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    7. [7]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    8. [8]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    9. [9]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    10. [10]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    11. [11]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    14. [14]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    15. [15]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    16. [16]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    18. [18]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    19. [19]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    20. [20]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

Metrics
  • PDF Downloads(8)
  • Abstract views(916)
  • HTML views(200)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return