Citation: JI Sheng-xiao, ZHANG Wei-jian, ZHENG Yu-ying, ZHU Jian-feng. Low-temperature combustion synthesis of the Mn-CeOx catalyst and its performance in the selective catalytic reduction of NOx by NH3[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(2): 224-232. shu

Low-temperature combustion synthesis of the Mn-CeOx catalyst and its performance in the selective catalytic reduction of NOx by NH3

  • Corresponding author: ZHENG Yu-ying, yyzheng@fzu.edu.cn
  • Received Date: 30 October 2018
    Revised Date: 16 December 2018

    Fund Project: the Science and Technology Program of Fuzhou 2016-G-72The project was supported by the Science and Technology Program of Fuzhou (2016-G-72)

Figures(9)

  • A series of Mn-CeOx(LCS) catalysts with different molar ratios of metal nitrates to citric acid were prepared by low-temperature combustion synthesis (LCS) method. Through a comparison with the Mn-CeOx(CP) catalysts prepared by coprecipitation method (CP) as well as various characterization techniques such as XRD, XPS, FESEM, H2-TPR and nitrogen physisorption, the catalytic performance of Mn-CeOx(LCS) in the selective catalytic reduction (SCR) of NOx by NH3 was then investigated. The results show that the molar ratio of metal nitrate to citric acid is an important factor affecting the denitrification performance of the Mn-CeOx(LCS) catalysts. In comparison with the Mn-CeOx(CP) catalysts, the Mn-CeOx(LCS) catalysts are provided with a higher manganese content and high Oα/(Oα+Oβ) ratio on the surface as well as more hierarchical pores favorable for adsorption and reaction of reactants, which affords the Mn-CeOx(LCS) catalysts much better denitrification performance. Over the Mn-CeOx(LCS) catalyst with a molar ratio of metal nitrate to citric acid of 36:22, the denitrification rate at 80-180℃ reaches 75%-100%; even in the presence of SO2, the denitrification rate over the Mn-CeOx(LCS) catalyst at 180℃ keeps at the level of 74%.
  • 加载中
    1. [1]

      CHEN L, SI Z C, WU X D, WENG D, RAN R, YU J. Rare earth containing catalysts for selective catalytic reduction of NOx with ammonia:A review[J]. J Rare Earth, 2014,32(10):907-917. doi: 10.1016/S1002-0721(14)60162-9

    2. [2]

      LIU C, SHI J W, GAO C, NIU C M. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3:A review[J]. Appl Catal A:Gen, 2016,522:54-69. doi: 10.1016/j.apcata.2016.04.023

    3. [3]

      MENG L K, WANG J, SUN Z H, ZHU J X, LI H, WANG J Q, SHEN M Q. Active manganese oxide on MnOx-CeO2 catalysts for low-temperature NO oxidation:Characterization and kinetics study[J]. J Rare Earth, 2018,36:142-147. doi: 10.1016/j.jre.2017.05.017

    4. [4]

      XIA F T, SONG Z X, LIU X, LIU X, YANG Y H, ZHANG Q L, PENG J H. Improved catalytic activity and N2 selectivity of Fe-Mn-Ox catalyst for selective catalytic reduction of NO by NH3 at low temperature[J]. Res Chem Interm, 2018,44:2703-2717. doi: 10.1007/s11164-018-3255-x

    5. [5]

      ZHANG Z J, WANG W Z, SHANG M, YIN W Z. Low-temperature combustion synthesis of Bi2WO6 nanoparticles as a visible-light-driven photocatalyst[J]. J Hazard Mater, 2010,177:1013-1018. doi: 10.1016/j.jhazmat.2010.01.020

    6. [6]

      LU Li-ping, ZHANG Xi-yan, BAI Zhao-hui, MI Xiao-yun. Research progress of low-temperature combustion synthesis method[J]. J Changchun Univ Sci Technol(Nat Sci Ed), 2008,31(3):82-84. doi: 10.3969/j.issn.1672-9870.2008.03.023

    7. [7]

      JAYANTHI M, LAVANYA T, SARADHA N A, SATHEESH K, CHENTHAMARAI S, JAYAVEL R. Superior photocatalytic performance of CeO2 nanoparticles and reduced graphene oxide nanocomposite prepared by low cost co-precipitation method[J]. J Nanosci Nanotechnol, 2018,18(5):3257-3265. doi: 10.1166/jnn.2018.14701

    8. [8]

      POURKHALIL M, MOGHADDAM A Z, RASHIDI A, TOWFIGHI J, JOZANI K J, BOZORGZADEH H. Synthesis of MnOx/oxidized-MWNTs for abatement of nitrogen oxides[J]. Catal Lett, 2013,143(2):184-192. doi: 10.1007/s10562-012-0938-6

    9. [9]

      LIOTTA L, DI CARLO G, PANTALEO G, VENEZIA A, DEGANELLO G. Co3O4/CeO2 composite oxides for methane emissions abatement:Relationship between Co3O4-CeO2 interaction and catalytic activity[J]. Appl Catal B:Environ, 2006,66(3/4):217-227.  

    10. [10]

      CHEN Xue-hong, ZHENG Yu-ying, FU Bin-bin, ZHENG Wei-jie. Preparation of MnO2/PoPD@PPS functional composites for low-temperature NO reduction with NH3[J]. J Fuel Chem Technol, 2017,45(12):1514-1521. doi: 10.3969/j.issn.0253-2409.2017.12.014 

    11. [11]

      QIAO J S, WANG N, WANG Z H, SUN W, SUN K N. Porous bimetallic Mn2Co1Ox catalysts prepared by a one-step combustion method for the low temperature selective catalytic reduction of NOx with NH3[J]. Catal Commun, 2015,72:111-115.  

    12. [12]

      MENG D M, ZHAN W C, GUO Y, GUO Y L, WANG L, LU G Z. A highly effective catalyst of Sm-MnOx for the NH3-SCR of NOx at low temperature:Promotional role of Sm and its catalytic performance[J]. Acs Catal, 2015,5:5973-5983. doi: 10.1021/acscatal.5b00747

  • 加载中
    1. [1]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    2. [2]

      Jinpeng DuJunlin ChenYulong ShanTongliang ZhangYu SunZhongqi LiuXiaoyan ShiWenpo ShanYunbo YuHong He . Insight into the effects of C3H6 on fresh and hydrothermally aged Cu-SSZ-39 catalysts. Chinese Chemical Letters, 2025, 36(3): 110019-. doi: 10.1016/j.cclet.2024.110019

    3. [3]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    4. [4]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    5. [5]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    6. [6]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    7. [7]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    8. [8]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    10. [10]

      Xueyu LinRuiqi WangWujie DongFuqiang Huang . Rational Design of Bimetallic Oxide Anodes for Superior Li+ Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-0. doi: 10.3866/PKU.WHXB202311005

    11. [11]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    12. [12]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    13. [13]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    14. [14]

      Xin HanZhihao ChengJinfeng ZhangJie LiuCheng ZhongWenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 2404023-0. doi: 10.3866/PKU.WHXB202404023

    15. [15]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    16. [16]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    18. [18]

      Liangliang SongHaoyan LiangShunqing LiBao QiuZhaoping Liu . Challenges and strategies on high-manganese Li-rich layered oxide cathodes for ultrahigh-energy-density batteries. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-0. doi: 10.1016/j.actphy.2025.100085

    19. [19]

      Qianwen HanTenglong ZhuQiuqiu LüMahong YuQin Zhong . Performance and Electrochemical Asymmetry Optimization of Hydrogen Electrode Supported Reversible Solid Oxide Cell. Acta Physico-Chimica Sinica, 2025, 41(1): 100005-0. doi: 10.3866/PKU.WHXB202309037

    20. [20]

      Shijie RenMingze GaoRui-Ting GaoLei Wang . Bimetallic Oxyhydroxide Cocatalyst Derived from CoFe MOF for Stable Solar Water Splitting. Acta Physico-Chimica Sinica, 2024, 40(7): 2307040-0. doi: 10.3866/PKU.WHXB202307040

Metrics
  • PDF Downloads(11)
  • Abstract views(1592)
  • HTML views(253)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return