Citation: JI Sheng-xiao, ZHANG Wei-jian, ZHENG Yu-ying, ZHU Jian-feng. Low-temperature combustion synthesis of the Mn-CeOx catalyst and its performance in the selective catalytic reduction of NOx by NH3[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(2): 224-232. shu

Low-temperature combustion synthesis of the Mn-CeOx catalyst and its performance in the selective catalytic reduction of NOx by NH3

  • Corresponding author: ZHENG Yu-ying, yyzheng@fzu.edu.cn
  • Received Date: 30 October 2018
    Revised Date: 16 December 2018

    Fund Project: the Science and Technology Program of Fuzhou 2016-G-72The project was supported by the Science and Technology Program of Fuzhou (2016-G-72)

Figures(9)

  • A series of Mn-CeOx(LCS) catalysts with different molar ratios of metal nitrates to citric acid were prepared by low-temperature combustion synthesis (LCS) method. Through a comparison with the Mn-CeOx(CP) catalysts prepared by coprecipitation method (CP) as well as various characterization techniques such as XRD, XPS, FESEM, H2-TPR and nitrogen physisorption, the catalytic performance of Mn-CeOx(LCS) in the selective catalytic reduction (SCR) of NOx by NH3 was then investigated. The results show that the molar ratio of metal nitrate to citric acid is an important factor affecting the denitrification performance of the Mn-CeOx(LCS) catalysts. In comparison with the Mn-CeOx(CP) catalysts, the Mn-CeOx(LCS) catalysts are provided with a higher manganese content and high Oα/(Oα+Oβ) ratio on the surface as well as more hierarchical pores favorable for adsorption and reaction of reactants, which affords the Mn-CeOx(LCS) catalysts much better denitrification performance. Over the Mn-CeOx(LCS) catalyst with a molar ratio of metal nitrate to citric acid of 36:22, the denitrification rate at 80-180℃ reaches 75%-100%; even in the presence of SO2, the denitrification rate over the Mn-CeOx(LCS) catalyst at 180℃ keeps at the level of 74%.
  • 加载中
    1. [1]

      CHEN L, SI Z C, WU X D, WENG D, RAN R, YU J. Rare earth containing catalysts for selective catalytic reduction of NOx with ammonia:A review[J]. J Rare Earth, 2014,32(10):907-917. doi: 10.1016/S1002-0721(14)60162-9

    2. [2]

      LIU C, SHI J W, GAO C, NIU C M. Manganese oxide-based catalysts for low-temperature selective catalytic reduction of NOx with NH3:A review[J]. Appl Catal A:Gen, 2016,522:54-69. doi: 10.1016/j.apcata.2016.04.023

    3. [3]

      MENG L K, WANG J, SUN Z H, ZHU J X, LI H, WANG J Q, SHEN M Q. Active manganese oxide on MnOx-CeO2 catalysts for low-temperature NO oxidation:Characterization and kinetics study[J]. J Rare Earth, 2018,36:142-147. doi: 10.1016/j.jre.2017.05.017

    4. [4]

      XIA F T, SONG Z X, LIU X, LIU X, YANG Y H, ZHANG Q L, PENG J H. Improved catalytic activity and N2 selectivity of Fe-Mn-Ox catalyst for selective catalytic reduction of NO by NH3 at low temperature[J]. Res Chem Interm, 2018,44:2703-2717. doi: 10.1007/s11164-018-3255-x

    5. [5]

      ZHANG Z J, WANG W Z, SHANG M, YIN W Z. Low-temperature combustion synthesis of Bi2WO6 nanoparticles as a visible-light-driven photocatalyst[J]. J Hazard Mater, 2010,177:1013-1018. doi: 10.1016/j.jhazmat.2010.01.020

    6. [6]

      LU Li-ping, ZHANG Xi-yan, BAI Zhao-hui, MI Xiao-yun. Research progress of low-temperature combustion synthesis method[J]. J Changchun Univ Sci Technol(Nat Sci Ed), 2008,31(3):82-84. doi: 10.3969/j.issn.1672-9870.2008.03.023

    7. [7]

      JAYANTHI M, LAVANYA T, SARADHA N A, SATHEESH K, CHENTHAMARAI S, JAYAVEL R. Superior photocatalytic performance of CeO2 nanoparticles and reduced graphene oxide nanocomposite prepared by low cost co-precipitation method[J]. J Nanosci Nanotechnol, 2018,18(5):3257-3265. doi: 10.1166/jnn.2018.14701

    8. [8]

      POURKHALIL M, MOGHADDAM A Z, RASHIDI A, TOWFIGHI J, JOZANI K J, BOZORGZADEH H. Synthesis of MnOx/oxidized-MWNTs for abatement of nitrogen oxides[J]. Catal Lett, 2013,143(2):184-192. doi: 10.1007/s10562-012-0938-6

    9. [9]

      LIOTTA L, DI CARLO G, PANTALEO G, VENEZIA A, DEGANELLO G. Co3O4/CeO2 composite oxides for methane emissions abatement:Relationship between Co3O4-CeO2 interaction and catalytic activity[J]. Appl Catal B:Environ, 2006,66(3/4):217-227.  

    10. [10]

      CHEN Xue-hong, ZHENG Yu-ying, FU Bin-bin, ZHENG Wei-jie. Preparation of MnO2/PoPD@PPS functional composites for low-temperature NO reduction with NH3[J]. J Fuel Chem Technol, 2017,45(12):1514-1521. doi: 10.3969/j.issn.0253-2409.2017.12.014 

    11. [11]

      QIAO J S, WANG N, WANG Z H, SUN W, SUN K N. Porous bimetallic Mn2Co1Ox catalysts prepared by a one-step combustion method for the low temperature selective catalytic reduction of NOx with NH3[J]. Catal Commun, 2015,72:111-115.  

    12. [12]

      MENG D M, ZHAN W C, GUO Y, GUO Y L, WANG L, LU G Z. A highly effective catalyst of Sm-MnOx for the NH3-SCR of NOx at low temperature:Promotional role of Sm and its catalytic performance[J]. Acs Catal, 2015,5:5973-5983. doi: 10.1021/acscatal.5b00747

  • 加载中
    1. [1]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    2. [2]

      Jinpeng DuJunlin ChenYulong ShanTongliang ZhangYu SunZhongqi LiuXiaoyan ShiWenpo ShanYunbo YuHong He . Insight into the effects of C3H6 on fresh and hydrothermally aged Cu-SSZ-39 catalysts. Chinese Chemical Letters, 2025, 36(3): 110019-. doi: 10.1016/j.cclet.2024.110019

    3. [3]

      Zhiwen HUWeixia DONGQifu BAOPing LI . Low-temperature synthesis of tetragonal BaTiO3 for piezocatalysis. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 857-866. doi: 10.11862/CJIC.20230462

    4. [4]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    5. [5]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    6. [6]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Yaping ZHANGTongchen WUYun ZHENGBizhou LIN . Z-scheme heterojunction β-Bi2O3 pillared CoAl layered double hydroxide nanohybrid: Fabrication and photocatalytic degradation property. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 531-539. doi: 10.11862/CJIC.20240256

    8. [8]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    9. [9]

      Xueyu Lin Ruiqi Wang Wujie Dong Fuqiang Huang . 高性能双金属氧化物负极的理性设计及储锂特性. Acta Physico-Chimica Sinica, 2025, 41(3): 2311005-. doi: 10.3866/PKU.WHXB202311005

    10. [10]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    11. [11]

      Xiaofeng Zhu Bingbing Xiao Jiaxin Su Shuai Wang Qingran Zhang Jun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-. doi: 10.3866/PKU.WHXB202407005

    12. [12]

      Xin Han Zhihao Cheng Jinfeng Zhang Jie Liu Cheng Zhong Wenbin Hu . Design of Amorphous High-Entropy FeCoCrMnBS (Oxy) Hydroxides for Boosting Oxygen Evolution Reaction. Acta Physico-Chimica Sinica, 2025, 41(4): 100033-. doi: 10.3866/PKU.WHXB202404023

    13. [13]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    14. [14]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    15. [15]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    16. [16]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    17. [17]

      Qianwen Han Tenglong Zhu Qiuqiu Lü Mahong Yu Qin Zhong . 氢电极支撑可逆固体氧化物电池性能及电化学不对称性优化. Acta Physico-Chimica Sinica, 2025, 41(1): 2309037-. doi: 10.3866/PKU.WHXB202309037

    18. [18]

      Liangliang Song Haoyan Liang Shunqing Li Bao Qiu Zhaoping Liu . 超高比能电池高锰富锂层状氧化物正极材料面临的挑战与解决策略. Acta Physico-Chimica Sinica, 2025, 41(8): 100085-. doi: 10.1016/j.actphy.2025.100085

    19. [19]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    20. [20]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

Metrics
  • PDF Downloads(11)
  • Abstract views(1560)
  • HTML views(249)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return