Study on the structure-reactivity correlation of SO42-/ZrO2-Al2O3 in n-butane isomerization reaction
- Corresponding author: LI Chun-yi, chuyli@upc.edu.cn
Citation:
ZHANG Wen-fang, ZHANG Min-xiu, WANG Peng-zhao, YANG Chao-he, LI Chun-yi. Study on the structure-reactivity correlation of SO42-/ZrO2-Al2O3 in n-butane isomerization reaction[J]. Journal of Fuel Chemistry and Technology,
;2017, 45(6): 669-674.
AISHA Nv-lahong, MO Wen-long, MA Feng-yun. The research of Au/HZSM-5 zeolite catalyst on n-butane isomerization reaction performance[J]. J Fuel Chem Technol, 2015,43(8):980-989.
ZHANG Yi-fei. The deactivation and regeneration of Pt-SO42-/ZrO2 solid superacids isomerization catalyst[D]. Shanghai:East China University of Science and Technology, 2012.
ZHANG Liu-yi, HAN Cai-yun, DU Dong-quan, ZHANG Yan-yan, XU Si-wei, LUO Yong-ming. Sulfated zirconia solid super acid[J]. Prog Chem, 2011,23(5):860-873.
YAMAGUCHI T. Recent progress in solid superacid[J]. Appl Catal, 1990,61(1):1-25. doi: 10.1016/S0166-9834(00)82131-4
YAMAGUCHI T, JIN T, TANABE K. Structure of acid sites on sulfur-promoted iron oxide[J]. J Phys Chem, 1986,90(14):3148-3152. doi: 10.1021/j100405a022
YAMAGUCHI T, JIN T, ISHIDA T, TANABE K. Structural identification of acid sites of sulfur-promoted solid super acid and construction of its structure on silica support[J]. Mater Chem Phys, 1987,17(1/2):3-19.
YALURIS G, LARSON R B, KOBE J M, GONZALEZ M R, FOGASH K B, DUMESIC J A. Selective poisoning and deactivation of acid sites on sulfated zirconia catalysts for n-butane isomerization[J]. J Catal, 1996,158(1):336-342. doi: 10.1006/jcat.1996.0032
LERCHER J A, GRÜNDLING C, EDER-MIRTH G. Infrared studies of the surface acidity of oxides and zeolites using adsorbed probe molecules[J]. Catal Today, 1996,27(3):353-376.
NASCIMENTO P, AKRATOPOULOU C, OSZAGYAN M, COUDURIER G, TRAVERS C, JOLY G F. ZrO2-SO42-catalysts. Nature and stability of acid sites responsible for n-butane isomerization[J]. Stud Surf Sci Catal, 1993,75:1185-1197. doi: 10.1016/S0167-2991(08)64443-2
MORTERRA C, CERRATO G, EMANUEL C, BOLIS V. On the surface acidity of some sulfate-doped ZrO2 catalysts[J]. J Catal, 1993,142(2):349-367. doi: 10.1006/jcat.1993.1213
WAQIF M, BACHELIER J, SAUR O, LAVALLEY J C. Acidic properties and stability of sulfate-promoted metal oxides[J]. J Mol Catal, 1992,72(1):127-138. doi: 10.1016/0304-5102(92)80036-G
WANG P Z, ZHANG J Y, WANG G W, LI C Y, YANG C H. Nature of active sites and deactivation mechanism for n-butane isomerization over alumina-promoted sulfated zirconia[J]. J Catal, 2016,338:124-134. doi: 10.1016/j.jcat.2016.02.027
GARCIA E, VOLPE M A, FERREIRA M L, RUEDA E. A discussion of a mechanism for isomerization of n-butane on sulfated zirconia[J]. J Mol Catal A:Chem, 2003,201(1):263-281.
CIESLA U, SCHACHT S, STUCKY G D, UNGER K K, SCHÜTH F. Formation of a porous zirconium oxo phosphate with a high surface area by a surfactant-assisted synthesis[J]. Angew Chem Int Ed, 1996,35(5):541-543. doi: 10.1002/(ISSN)1521-3773
YANG X, JENTOFT F C, JENTOFT R E, GIRGSDIES F, RESSLER T. Sulfated zirconia with ordered mesopores as an active catalyst for n-butane isomerization[J]. Catal Lett, 2002,81(1/2):25-31. doi: 10.1023/A:1016095603350
ALHASSAN F H, RASHID U, AL-QUBAISI M S, RASEDEE A, TAUFIQ-YAP Y H. The effect of sulfate contents on the surface properties of iron-manganese doped sulfated zirconia catalysts[J]. Powder Technol, 2014,253:809-813. doi: 10.1016/j.powtec.2013.12.045
MORTERRA C, CERRATO G, PINNA F, SIGNORETTO M. Crystal phase, spectral features, and catalytic activity of sulfate-doped zirconia systems[J]. J Catal, 1995,157(1):109-123. doi: 10.1006/jcat.1995.1272
WANG P Z, ZHANG J Y, HAN C H, YANG C H, LI C Y. Effect of modification methods on the surface properties and n-butane isomerization performance of La/Ni-promoted SO42-/ZrO2-Al2 O3[J]. Appl Surf Sci, 2016,378:489-495. doi: 10.1016/j.apsusc.2016.04.043
COMELLI R A, CANAVESE S A, VAUDAGNA S R, FIGOLI N S. Pt/SO42-/ZrO2:Characterization and influence of pretreatments on n-hexane isomerization[J]. Appl Catal A:Gen, 1996,135(2):287-299. doi: 10.1016/0926-860X(95)00233-2
LIU N W, GUO X F, NAVROTSKY A, LI S, WU D. Thermodynamic complexity of sulfated zirconia catalysts[J]. J Catal, 2016,342:158-163. doi: 10.1016/j.jcat.2016.08.001
KATADA N, ENDO J I, NOTSU K I, YASUNOBU N, NAITO N, NIWA M. Superacidity and catalytic activity of sulfated zirconia[J]. J Phys Chem B, 2000,104(44):10321-10328. doi: 10.1021/jp002212o
HINO M, KURASHIGE M, MATSUHASHI H, ARATA K. The surface structure of sulfated zirconia:Studies of XPS and thermal analysis[J]. Thermochim Acta, 2006,441(1):35-41. doi: 10.1016/j.tca.2005.11.042
ARATA K, HINO M. Solid catalyst treated with anion:ⅩⅤⅢ. Benzoylation of toluene with benzoyl chloride and benzoic anhydride catalysed by solid superacid of sulfate-supported alumina[J]. Appl Catal, 1990,59(1):197-204. doi: 10.1016/S0166-9834(00)82197-1
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
Hao Wu , Zhen Liu , Dachang Bai . 1H NMR Spectrum of Amide Compounds. University Chemistry, 2024, 39(3): 231-238. doi: 10.3866/PKU.DXHX202309020
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Shuangxi Li , Huijun Yu , Tianwei Lan , Liyi Shi , Danhong Cheng , Lupeng Han , Dengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240
Xueli Mu , Lingli Han , Tao Liu . Quantum Chemical Calculation Study on the E2 Elimination Reaction of Halohydrocarbon: Designing a Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 68-75. doi: 10.12461/PKU.DXHX202404057
Haojie Duan , Hejingying Niu , Lina Gan , Xiaodi Duan , Shuo Shi , Li Li . Reinterpret the heterogeneous reaction of α-Fe2O3 and NO2 with 2D-COS: The role of SDS, UV and SO2. Chinese Chemical Letters, 2024, 35(6): 109038-. doi: 10.1016/j.cclet.2023.109038
Liuyun Chen , Wenju Wang , Tairong Lu , Xuan Luo , Xinling Xie , Kelin Huang , Shanli Qin , Tongming Su , Zuzeng Qin , Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054
Cuiwu MO , Gangmin ZHANG , Chao WU , Zhipeng HUANG , Chi ZHANG . A(NH2SO3) (A=Li, Na): Two ultraviolet transparent sulfamates exhibiting second harmonic generation response. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1387-1396. doi: 10.11862/CJIC.20240045
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039
Hongyi LI , Aimin WU , Liuyang ZHAO , Xinpeng LIU , Fengqin CHEN , Aikui LI , Hao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480
Xingyang LI , Tianju LIU , Yang GAO , Dandan ZHANG , Yong ZHOU , Meng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026
Ruming Yuan , Pingping Wu , Laiying Zhang , Xiaoming Xu , Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057
Shiqi Peng , Yongfang Rao , Tan Li , Yufei Zhang , Jun-ji Cao , Shuncheng Lee , Yu Huang . Regulating the electronic structure of Ir single atoms by ZrO2 nanoparticles for enhanced catalytic oxidation of formaldehyde at room temperature. Chinese Chemical Letters, 2024, 35(7): 109219-. doi: 10.1016/j.cclet.2023.109219
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Ming Li , Zhaoyin Li , Mengzhu Liu , Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085
Gonglan Ye , Xia Yin , Feng Xu , Peng Yang , Yingpeng Wu , Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071
Quanguo Zhai , Peng Zhang , Wenyu Yuan , Ying Wang , Shu'ni Li , Mancheng Hu , Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065
Juan Guo , Mingyuan Fang , Qingsong Liu , Xiao Ren , Yongqiang Qiao , Mingju Chao , Erjun Liang , Qilong Gao . Zero thermal expansion in Cs2W3O10. Chinese Chemical Letters, 2024, 35(7): 108957-. doi: 10.1016/j.cclet.2023.108957
(reation conditions: t=200 ℃, p=1.01×105 Pa, H2:C4=2:3)