Citation: RUAN Ren-hui, LI Guang-lin, TAN Hou-zhang, BAI Sheng-jie, WEI Bo, HU Zhong-fa, YANG Fu-xin. Effect of sodium on the formation of fine particulates during synthetic char combustion[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(3): 283-289. shu

Effect of sodium on the formation of fine particulates during synthetic char combustion

  • Corresponding author: TAN Hou-zhang, tanhz@mail.xjtu.edu.cn
  • Received Date: 24 November 2017
    Revised Date: 28 January 2018

    Fund Project: The project was supported by the the National Key Research and Development Plan of China (2016YFB0600605)the the National Key Research and Development Plan of China 2016YFB0600605

Figures(7)

  • Synthetic char was used as the mineral carrier to study the characteristic of fine particulates formation during coal combustion. The silica oxide and aluminum oxide were added to synthetic char to study the interaction between sodium and common minerals in coal. The results show that the inorganic water-soluble sodium is more likely to form stable fine particles, while organic sodium is preferred to react with silica and aluminum compounds in the absence of chlorine. Chemical reactions and physical capture are two main ways for sodium capture by silica, aluminum compounds. The sodium captured through chemical reactions is 2.4 times that by physical way.
  • 加载中
    1. [1]

      CHEN Chuan, ZHANG Shou-yu, SHI Da-zhong, LIU Da-hai. Study on sodium removal for zhundong coal upgrading[J]. Coal Convers, 2013,36(4):14-18.  

    2. [2]

      QI Xiao-bin, SONG Guo-liang, SONG Wei-jian, LÜ Qing-gang. Alkali metal migration and slagging characteristic during Zhundong high-alkali coal gasification[J]. J Fuel Chem Technol, 2015,43(8):906-913.  

    3. [3]

      ZHOU Yong-gang, FAN Jian-yong, LI Pei, WANG Bin-hui, ZHAO Hong. Slagging characteristic of high alkalis Zhundong coal[J]. J Zhejiang Univ (Eng Sci), 2014,48(11):2061-2065.  

    4. [4]

      ZHANG Yu-kui, ZHANG Hai-xia, ZHU Zhi-ping. Physical and chemical properties of fly ash from fluidized bed gasification of Zhundong coal[J]. J Fuel Chem Technol, 2016,44(3):305-313.  

    5. [5]

      YANG Shao-bo, SONG Guo-liang, SONG Wei-jian, QI Xiao-bin. Transformation and deposition characteristics of sodium in Zhundong high sodium coal under different reaction atmospheres[J]. J Fuel Chem Technol, 2016,44(9):1051-1058.  

    6. [6]

      RUAN R H, TAN H Z, WANG X B, LI Y, LI S S, HU Z F, WEI B, YANG T. Characteristics of fine particulate matter formation during combustion of lignite riched in AAEM (alkali and alkaline earth metals) and sulfur[J]. Fuel, 2018,211:206-213. doi: 10.1016/j.fuel.2017.08.114

    7. [7]

      YANG Yi-hong, TAO Jun, ZHU Li-hua, ZHANG Zhi-sheng, WANG Qi-yuan, CAO Jun-ji. Characterization of chemical compositions of PM2.5 and its impact on scattering coefficients at a background site over Western China[J]. J Environ Sci, 2017,37(4):1216-1226.  

    8. [8]

      GUO Shuai, JIANG Yun-feng, XIONG Qing-an, SONG Shuang-shuang, ZHAO Jian-tao, FANG Yi-tian. Release and transformation behaviors of sodium species with different occurrence modes during pyrolysis of Zhundong coal[J]. J Fuel Chem Technol, 2017,45(3):257-264.  

    9. [9]

      LIU Xiao-wei, XU Ming-hou, YAO Hong, YU Dun-xi, LV Dang-zhen, ZHANG Hui-xing. Study of occurrence mode of sodium effect on the submicron ash particle formation during coal combustion[J]. J Eng Thermophys, 2009,30(9):1589-1592.  

    10. [10]

      YANG Ming, CHEN Ming-hua, GU Hong-wei. Study on the occurrence of alkali metal in high sodium XingJiang coal by sequential extraction[J]. Coal Qual Technol, 2014(6):8-11.  

    11. [11]

      QI Hui, ZHAO Yong-chun, YAO Bin, ZHANG Jun-ying, ZHENG Chu-guang. Influence factors of removing water soluble sodium in Zhundong coal by water washing[J]. Therm Power Gener, 2015,44(9):14-18.  

    12. [12]

      GAO X P, RAHIM M U, CHEN X X, WU H W. Significant contribution of organically-bound Mg, Ca, and Fe to inorganic PM 10 emission during the combustion of pulverized Victorian brown coal[J]. Fuel, 2014,117:825-832. doi: 10.1016/j.fuel.2013.09.056

    13. [13]

      HELBLE J J. Mechanisms of ash particle formation and growth during pulverized coal combustion[D]. Massachusetts: Massachusetts Institute of Technology, 1987.

    14. [14]

      GRAHAM K A. Submicron ash formation and interaction with sulfur oxides during pulverized coal combustion[D]. Massachusetts: Massachusetts Institute of Technology, 1991.

    15. [15]

      XU Y S, LIU X W, ZHOU Z J, SHENG L, WANG C, XU M H. The role of steam in silica vaporization and ultrafine particulate matter formation during wet oxy-coal combustion[J]. Appl Energy, 2014,133(15):144-151.  

    16. [16]

      SI J P, LIU X W, XU M H, SHENG L, ZHOU Z J, WANG C, ZHANG Y, SEO Y C. Effect of kaolin additive on PM 2.5 reduction during pulverized coal combustion:Importance of sodium and its occurrence in coal[J]. Appl Energy, 2014,114:434-444. doi: 10.1016/j.apenergy.2013.10.002

    17. [17]

      LEVENDIS Y A, JOSHI K, KHATAMI R, SAROFIM A F. Combustion behavior in air of single particles from three different coal ranks and from sugarcane bagasse[J]. Combust Flame, 2011,158(3):452-465. doi: 10.1016/j.combustflame.2010.09.007

    18. [18]

      FENG Li, YU Xiao-hui, LIU Xiang-chun, ZHAO Ying-ya. Effects of ash removal on the structure and combustion characteristic of Shengli lignite[J]. J China Uni Min Technol, 2015,44(02):319-325.  

    19. [19]

      WANG X B, RUAN R H, YANG T, ADEOSUN Adewale, ZHANG L M, WEI B, TAN H Z, AXELBAUM R L. Sulfate removal by kaolin addition to address fouling in a full-scale furnace burning high-alkaline Zhundong coal[J]. Energy Fuels, 2017,31(11):12823-12830. doi: 10.1021/acs.energyfuels.7b02099

    20. [20]

      QUANN R J. Ash vaporization under simulated pulverized coal combustion conditions[D]. Massachusetts: Massachusetts Institute of Technology, 1982.

    21. [21]

      KNUDSEN J N, JEN SEN P A, DAM Johansen K. Transformation and release to the gas phase of Cl, K, and S during combustion of annual biomass[J]. Energy Fuels, 2004,18(5):1385-1399. doi: 10.1021/ef049944q

    22. [22]

      LI R B, CHEN Q, ZHANG H X. Detailed investigation on sodium (Na) species release and transformation mechanism during pyrolysis and char gasification of high-Na Zhundong coal[J]. Energy Fuels, 2017,31(6):5902-5912. doi: 10.1021/acs.energyfuels.7b00410

    23. [23]

      XU Y S, LIU X W, ZHANG P H, GUO J Z, HAN J K, ZHOU Z J, XU M H. Role of chlorine in ultrafine particulate matter formation during the combustion of a blend of high-Cl coal and low-Cl coal[J]. Fuel, 2016,184(15):185-191.  

  • 加载中
    1. [1]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    2. [2]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    3. [3]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    4. [4]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    5. [5]

      Ziliang KANGJiamin ZHANGHong ANXiaohua LIUYang CHENJinping LILibo LI . Preparation and water adsorption properties of CaCl2@MOF-808 in-situ composite moulded particles. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2133-2140. doi: 10.11862/CJIC.20240282

    6. [6]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    7. [7]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    8. [8]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    9. [9]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    10. [10]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    11. [11]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    12. [12]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    13. [13]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    14. [14]

      Jiaming Xu Yu Xiang Weisheng Lin Zhiwei Miao . Research Progress in the Synthesis of Cyclic Organic Compounds Using Bimetallic Relay Catalytic Strategies. University Chemistry, 2024, 39(3): 239-257. doi: 10.3866/PKU.DXHX202309093

    15. [15]

      Yongpo Zhang Xinfeng Li Yafei Song Mengyao Sun Congcong Yin Chunyan Gao Jinzhong Zhao . Synthesis of Chlorine-Bridged Binuclear Cu(I) Complexes Based on Conjugation-Driven Cu(II) Oxidized Secondary Amines. University Chemistry, 2024, 39(5): 44-51. doi: 10.3866/PKU.DXHX202309092

    16. [16]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    17. [17]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    18. [18]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    19. [19]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    20. [20]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

Metrics
  • PDF Downloads(4)
  • Abstract views(1624)
  • HTML views(164)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return