Citation: LIU Shou-guang, LIU Yue, LIU Yi-mo, WANG Yu-he. Hydrogen production by steam reforming of bio-oils over mesoporous Ni/MgO catalyst[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(4): 424-431. shu

Hydrogen production by steam reforming of bio-oils over mesoporous Ni/MgO catalyst

  • Corresponding author: WANG Yu-he, wangyuhe@hrbnu.edu.cn
  • Received Date: 9 January 2020
    Revised Date: 1 February 2020

    Fund Project: Overseas Scholars Program of Department of Education, Heilongjiang Province 1155h019The project was supported by Overseas Scholars Program of Department of Education, Heilongjiang Province (1155h019)

Figures(6)

  • A catalyst support of mesoporous MgO was prepared using hydrothermal method, with which a mesoporous Ni/MgO catalyst was prepared by impregnation method. The hydrogen production experiment by steam reforming of biomass oil models and two kinds of commercial biomass oils over the mesoporous Ni/MgO catalyst was conducted. The results show that the furfural conversion, hydrogen yield and hydrogen selectivity increase with increasing the reaction temperature. When the reaction temperature is increased to 600 ℃, the furfural conversion and the hydrogen yield reach 94.9% and 83.2%, respectively. In addition, the hydrogen yields for steam reforming of furfural/acetic acid and furfural/hydroxyacetone reach 87.3% and 86.8%, respectively, which are higher than the corresponding hydrogen yields in steam reforming furfural. The result indicates that the acetic acid or hydroxyacetone can promote the conversion of furfural which is the main organic component in the simulated biomass oil. When the commercial biomass oils is used, the conversion of main organics, hydrogen yield and hydrogen selectivity exhibit an increasing trend with the increase of the ratio of water to the carbon of reactant (S/C = 5, 10, 15, 20, 25). Under the S/C(molar ratio)=20, the conversion of main organic components (furfural, acetic acid, and hydroxyacetone) in two kinds of biomass oils can reach more than 90% and the yield of hydrogen can also be more than 81.0%, showing that the mesoporous Ni/MgO catalyst also has higher catalytic activity for the steam reforming of commercial biomass oils.
  • 加载中
    1. [1]

      DAS D, VEZIROGLU T N. Hydrogen production by biological processes:A survey of literature[J]. Int J Hydrogen Energy, 2001,26(1):13-28.  

    2. [2]

      SIRIRUANG C, CHAROJROCHKUL S, TOOCHINDA P. Hydrogen production from methanol-steam reforming at low temperature over Cu-Zn/ZrO2-doped Al2O3[J]. Monatsh Chem, 2016,147(7):1143-1151.  

    3. [3]

      BLEISCHWITZ R, BADER N. Policies for the transition towards a hydrogen economy:the EU case[J]. Energy Policy, 2010,38(10):5388-5398.  

    4. [4]

      FIERRO J L G, PENA M A, GOMEZ J P. New catalytic routes for syngas and hydrogen production[J]. Appl Catal A:Gen, 1996,144(1/2):7-57.  

    5. [5]

      KOTHARI R, BUDDHI D, SAWHNEY R L. Comparison of environmental and economic aspects of various hydrogen production methods[J]. Renewable Sustainable Energy Rev, 2008,12(2):553-563.  

    6. [6]

      TANG Can. Research status of bio-oil steam catalytic reforming for hydrogen production[J]. Appl Energy Technol, 2019(6):1-3.  

    7. [7]

      NAKAMURA K, MIYAZAWA T, SAKURAI T, MIYAO T, NAITO S, BEGUM N, KUNIMORI K, TOMISHIGE K. Promoting effect of MgO addition to Pt/Ni/CeO2/Al2O3 in the steam gasification of biomass[J]. Appl Catal B:Environ, 2009,86(1/2):36-44.  

    8. [8]

      SATO K, FUJIMOTO K. Development of new nickel based catalyst for tar reforming with superior resistance to sulfur poisoning and coking in biomass gasification[J]. Catal Commun, 2007,8(11):1697-1701.  

    9. [9]

      XIE Deng-yin, ZHANG Su-ping, CHEN Zhi-yuan, CHEN Zhen-qi, XU Qing-li. Co and Cu modified Ni/Al2O3 steam reforming catalysts for hydrogen production from model bio-oil[J]. J Fuel Chem Technol, 2015,43(3):302-308.  

    10. [10]

      WANG Yi-shuang, CHEN Ming-qiang, LIU Shao-min, YANG Zhong-lian, SHEN Chao-ping, LIU Ke. Hydrogen production via catalytic steam reforming of bio-oil model compounds over NiO-Fe2O3-loaded palygouskite[J]. J Fuel Chem Technol, 2015,43(12):1470-1475.  

    11. [11]

      YANG X, WANG Y, LI M, SUN B, LI Y, WANG Y. Enhanced hydrogen production by steam reforming of acetic acid over a Ni catalyst supported on mesoporous MgO[J]. Energy Fuels, 2016,30(3):2198-2203.  

    12. [12]

      WANG Y, YANG X, WANG Y. Catalytic performance of mesoporous MgO supported Ni catalyst in steam reforming of model compounds of biomass fermentation for hydrogen production[J]. Int J Hydrogen Energy, 2016,41(40):17846-17857.  

    13. [13]

      YANG X, WANG Y, WANG Y. Significantly improved catalytic performance of Ni-based MgO catalyst in steam reforming of phenol by inducing mesostructure[J]. Catalysts, 2015,5(4):1721-1736.  

    14. [14]

      WANG Y, JI T, YANG X, WANG Y. Comparative study on steam reforming of single- and multicomponent model compounds of biomass fermentation for producing biohydrogen over mesoporous Ni/MgO catalyst[J]. Energy Fuels, 2016,30(10):8432-8440.  

    15. [15]

      JI Ting-ting, YANG Xiao-xuan, WANG Ya-jing, WANG Yu-he. Steam reforming of phenol for producing hydrogen by metal Ni support on MgO prepared by different methods[J]. J Fuel Chem Technol, 2016,44(9):1131-1137.  

    16. [16]

      LING Z, ZHENG M, DU Q, WANG Y, SONG J, DAI W, ZHANG L, JI G, CAO J. Synthesis of mesoporous MgO nanoplate by an easy solvothermal-annealing method[J]. Solid State Sci, 2011,13(12):2073-2079.  

    17. [17]

      ROSEN J, HUTCHINGS G, JIAO F. Synthesis, structure, and photocatalytic properties of ordered mesoporous metal-doped Co3O4[J]. J Catal, 2014,310(1):2-9.  

    18. [18]

      LI Y, LU G, MA J. Highly active and stable nano NiO-MgO catalyst encapsulated by silica with a core-shell structure for CO2 methanation[J]. RSC Adv, 2014,4(34)17420.  

    19. [19]

      YU M, ZHU K, LIU Z, XIAO H, DENG W, ZHOU X. Carbon dioxide reforming of methane over promoted NixMg1-xO (111) platelet catalyst derived from solvothermal synthesis[J]. Appl Catal B:Environ, 2014,148/149:177-190.

    20. [20]

      TZIMAS E, PETEVES D S. The impact of carbon sequestration on the production cost of electricity and hydrogen from coal and natural-gas technologies in Europe in the medium term[J]. Energy, 2005,30(14):2672-2689.  

  • 加载中
    1. [1]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    2. [2]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    3. [3]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    4. [4]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    5. [5]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    6. [6]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    7. [7]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    8. [8]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    9. [9]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    10. [10]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    11. [11]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    12. [12]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    13. [13]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    14. [14]

      Peipei SunJinyuan ZhangYanhua SongZhao MoZhigang ChenHui Xu . Built-in Electric Fields Enhancing Photocarrier Separation and H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2311001-0. doi: 10.3866/PKU.WHXB202311001

    15. [15]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    16. [16]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    17. [17]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    18. [18]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    19. [19]

      Shahua Huang Xiaoming Guo Lin Lin Guangping Chang Sheng Han Zuxin Zhou . Application of “Integration of Industry and Education” in Engineering Chemistry: Improvement of the Pesticide Fipronil Production. University Chemistry, 2024, 39(3): 199-204. doi: 10.3866/PKU.DXHX202309064

    20. [20]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

Metrics
  • PDF Downloads(11)
  • Abstract views(1000)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return