Citation: Fengyan Fu, Jingquan Cheng, Sufang Zhang, Zhihua Gao, Jie Zhang, Yongchao Hao. Recent Development in Quaternary Ammonium Groups-Based Anion Exchange Membrane[J]. Chemistry, ;2021, 84(3): 246-253. shu

Recent Development in Quaternary Ammonium Groups-Based Anion Exchange Membrane

  • Corresponding author: Fengyan Fu, 1374195561@qq.com
  • Received Date: 5 August 2020
    Accepted Date: 16 October 2020

Figures(11)

  • Anion exchange membrane fuel cells (AEMFCs) have attracted worldwide attention. To achieve high performance in AEMFCs, anion exchange membranes (AEMs) should own high ion conductivity and good alkaline stability. AEMs contain cationic groups and polymer backbone, which play very important role in determining the overall stability and ionic conductivity for the AEMs. In this paper, the alkaline stability and ion conductivity of quaternary ammonium (QA) AEMs with alkylic QA AEMs, N-spirocyclic QA AEMs, cyclic QA AEMs, including both aryl ether-free and aryl ether-containing structure are introduced in detail, the alkaline stability of quaternary ammonium salts with different frameworks are summarized, the degradation mechanisms for QA are analyzed, and the development trend of the QA cationic groups are discussed.
  • 加载中
    1. [1]

      Merle G, Wessling M, Nijmeijer K. J. Membr. Sci., 2011, 377(1-2): 1~35. 

    2. [2]

      Matsumoto K, Fujigaya T, Yanagi H, et al. Adv. Funct. Mater., 2011, 21(6): 1089~1094. 

    3. [3]

      Kruusenbergk I, Matisen L, Shah Q, et al. Int. J. Hydrogen. Energ., 2012, 37(5): 4406~4412. 

    4. [4]

      Mauryam S, Shin S H, Kim Y, et al. RSC Adv., 2015, 5(47): 37206~37230. 

    5. [5]

      Dekel D R. J. Power Sources, 2018, 375: 158~169. 

    6. [6]

      Meek K M, Nykaza J R, Elabd Y A. Macromolecules, 2016, 49(9): 3382~3394. 

    7. [7]

      Cheng J, Yang G, Zhang K, et al. J. Membr. Sci., 2016, 501: 100~108. 

    8. [8]

      Gong X, Yan X, Li T, et al. J. Membr. Sci., 2017, 523: 216~224. 

    9. [9]

      Zhang B, Kaspar R B, Gu S, et al. ChemSusChem, 2016, 9(17): 2374~2379. 

    10. [10]

      Zha Y P, Disabb-Miller M L, Johnson Z D, et al. J. Am. Chem. Soc., 2012, 134(10): 4493~4496. 

    11. [11]

      Wei Y, Kevin J T N, Geoffrey W C. Prog. Polym. Sci., 2020, 100: 101177. 

    12. [12]

      Dong X, Hou S, Mao H, et al. J. Membr. Sci., 2016, 518: 31~39. 

    13. [13]

      Li N, Leng Y, Hickner M A, et al. J. Am. Chem. Soc., 2013, 135(27): 10124~10133. 

    14. [14]

      Zhu L, Pan J, Christensen C M, et al. Macromolecules, 2016, 49(9): 3300~3309. 

    15. [15]

      Dang H S, Jannasch P. Macromolecules, 2015, 48(16): 5742~5751. 

    16. [16]

      Hibbs M R, Fujimoto C H, Cornelius C J. Macromolecules, 2009, 42(21): 8316~8321. 

    17. [17]

      Hibbs M R. J. Polym. Sci. B, 2013, 51: 1736~1742. 

    18. [18]

      Maurya S, Fujimoto C H, Hibbs M R, et al. Chem. Mater., 2018, 30: 2188~2192. 

    19. [19]

      Park E U, Maurya S, Hibbs M R. Macromolecules, 2019, 52(14): 5419~5428. 

    20. [20]

      Lee W H, Mohanty A D, Bae C. ACS Macro Lett., 2015, 4: 453~457. 

    21. [21]

      Lee W H, Kim Y S, Bae C. ACS Macro Lett., 2015, 4: 814~818. 

    22. [22]

      Lee W H, Park E J, Han J Y, et al. ACS Macro Lett., 2017, 6: 566~570. 

    23. [23]

       

    24. [24]

      Zhang M, Shan C R, Liu L, et al. ACS Appl. Mater. Interf., 2016, 8(35): 23321~23330. 

    25. [25]

      Jeon J Y, Park S, Han J, et al. Macromolecules, 2019, 52(5): 2139~2147. 

    26. [26]

      Lin B C, Xu F, Su Y, et al. Ind. Eng. Chem. Res., 2019, 58(49): 22299~22305. 

    27. [27]

      Mrino M G, Kreuer K D. ChemSusChem, 2015, 8(3): 513~523. 

    28. [28]

      Olsson J S, Pham T H, Jannasch P. Adv. Funct. Mater., 2018, 28(2): 1702758. 

    29. [29]

      Olsson J S, Pham T H, Jannasch P. Macromolecules, 2017, 50(7): 2784~2793. 

    30. [30]

      Pham T H, Olsson J S, Jannasch P. J. Mater. Chem. A, 2018, 6(34): 16537~16547. 

    31. [31]

      Chen N J, Long C, Li Y X, et al. ACS Appl. Mater. Interf., 2018, 10(18): 15720~15732. 

    32. [32]

      Chen N J, Lu C R, Li Y X, et al. J. Membr. Sci., 2019, 572: 246~254. 

    33. [33]

      Chu X M, Liu L, Huang Y D, et al. J. Membr. Sci., 2019, 578: 239~250. 

    34. [34]

      Zhang Y, Chen W T, Yan X M, et al. J. Membr. Sci., 2020, 598: 117650. 

    35. [35]

      Lin C X, Yu D M, Wang J X, et al. Int. J. Hydrogen. Energ., 2019, 44(48): 26565~26576. 

    36. [36]

      Döbbelin M, Azcune I, Bedu M, et al. Chem. Mater., 2012, 24(9): 1583~1590. 

    37. [37]

      Chu X M, Shi Y, Liu L, et al. J. Mater. Chem. A, 2019, 7(13): 7717~7727. 

    38. [38]

      Wang F, Xue B X, Zhou S Y, et al. J. Membr. Sci., 2019, 591: 117334. 

    39. [39]

      Ren R, Zhang S M, Miller H A, et al. ACS. Appl. Energy. Mater. . 2019, 2(7): 4576~4581. 

    40. [40]

      Wang J H, Zhao Y, Brian P, et al. Nat. Energy, 2019, 4(5): 392~398. 

    41. [41]

      Wang K F, Gao L, Liu J F, et al. J. Membr. Sci., 2019, 588: 117216. 

    42. [42]

      Gu F L, Dong H L, Li Y Y, et al. Macromolecules, 2014, 47(19): 6740~6747. 

    43. [43]

      Dong X, Ly D, Zheng J F, et al. J. Membr. Sci., 2017, 535: 301~311. 

    44. [44]

      Arges C G, Ramani V. PNAS, 2013, 110(7): 2490~2495. 

    45. [45]

      Mohanty A D, Tignor S E, Krause J A, et al. Macromolecules, 2016, 49(9): 3361~3372. 

    46. [46]

      Miyanishi S, Yamaguchi T. Phys. Chem. Chem. Phys., 2016, 18: 12009~12023. 

    47. [47]

      Park E J, Kim Y S. J. Mater. Chem. A, 2018, 6(32): 15456~15477. 

    48. [48]

      Sun Z, Pan J, Guo J, et al. Adv. Sci., 2018, 5(8): 1800065. 

    49. [49]

      Hagesteijn K F L, Jiang S X, Ladewig B P. J. Mater. Sci., 2018, 53: 11131~11150. 

    50. [50]

      Xue J D, Liu X, Zhang J F, et al. J. Membr. Sci., 2020, 595: 117507. 

    51. [51]

      Liu F H, Yang Q, Gao X L, et al. J. Membr. Sci., 2020, 595: 117560. 

    52. [52]

      Ran J, Wu L, He Y, et al. J. Membr. Sci., 2017, 522: 267~291. 

  • 加载中
    1. [1]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    2. [2]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    3. [3]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    4. [4]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    5. [5]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    6. [6]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    7. [7]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    8. [8]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    9. [9]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    10. [10]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    11. [11]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    12. [12]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    13. [13]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    14. [14]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    15. [15]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    16. [16]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    17. [17]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    18. [18]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    19. [19]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    20. [20]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

Metrics
  • PDF Downloads(116)
  • Abstract views(3429)
  • HTML views(1377)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return