Citation: DENG Tian-yin, GAO Li-juan, MA Lin-ge, CHEN Jing-yun, LI Jing, GUO Xiao-fen. Phenol etherification with methanol to anisole over supported Cs catalysts[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(9): 1138-1144. shu

Phenol etherification with methanol to anisole over supported Cs catalysts

  • Corresponding author: GUO Xiao-fen, guoxiaofen@nicenergy.com
  • Received Date: 26 February 2016
    Revised Date: 12 June 2016

    Fund Project: National High Technology Research and Development Program of China 2011AA05A202National High Technology Research and Development Program of China 863 programShenhua Group Foundation CF9300140004

Figures(8)

  • The effect of acid and basic sites, support, cesium precursor and cesium loading on the performance of supported Cs catalysts in the etherification of phenol with methanol to anisole was investigated. The results illustrate that the cations of basic sites play an important role in the selective conversion of phenol to anisole; the basic sites give higher selectivity to anisole than the acid sites. The catalytic activity in phenol etherification decreases with the increase of the cesium ion binding energy, which is related to the support used. Moreover, the support also has an influence on the amount of strong basic sites, which is related to the selectivity to anisole; high amount of strong basic sites may promote the side reaction and decrease the selectivity to anisole. Cs/SiO2 catalysts prepared with various precursors are different in the surface Cs/Si atomic ratio, which may also influence the catalytic activity in phenol etherification; if the cesium loading exceeds the monolayer dispersion of cesium on SiO2, which is nearly 1.0 mmol/g, the average activity of Cs/SiO2 in phenol etherification decreases greatly.
  • 加载中
    1. [1]

      WANG Ru-cheng, SUN Ming, LIU Qiao-xia, MA Yan-xing, FENG Guang, XU Long, MA Xiao-xun. Extraction and GC/MS analysis of phenolic compounds in low temperature coal tar from Northern Shaanxi[J]. J China Coal Soc, 2011,36(4):664-669.  

    2. [2]

      MA Bao-qi, REN Pei-jian, YANG Zhan-biao, WANG Shu-kuan. Preparation of Fuel Oil From Coal Tar[M]. Beijing: Chemical Industry Press, 2011.

    3. [3]

      HAN Lei, HUANG Chuan-feng, YANG Tian, YANG Yong-jia, LI Wei, WANG Meng-yan, JIAO You-jun, REN Cai-ling, YANG Fan, WANG Yong-juan. A combined device for coal tar processing and coal liquefaction: CN, 201520459906.X[P]. 2015-11-18.

    4. [4]

      MORGAN J J, MEIGHAN M H. Extraction of phenols from tar oils by the caustic soda process[J]. Ind Eng Chem, 1925,17:696-700. doi: 10.1021/ie50187a018

    5. [5]

      BERGERON P, HINMAN N. Technical and economic analysis of lignin conversion to methyl aryl ethers[J]. Appl Biochem Biotechnol, 1990,24-25(1):15-29. doi: 10.1007/BF02920230

    6. [6]

      FARCASIU D, PRINCETON N J. Etherification catalyst: US, 4406821[P]. 1982-08-30.

    7. [7]

      DOLHYJ S R, PAPARIZOS C. Motor fuel additives derived from shale oil: US, 4407661[P]. 1983-10-4.

    8. [8]

      WANG Ze, DANG Dan, SONG Wen-li, LIN Wei-gang, LI Song-geng. Catalyst and treatment method for upgrading tar by using catalyst: CN, 201310342276.3[P]. 2013-08-07.

    9. [9]

      WANG Li-jun, TANG Xiang-hai, ZHU Rui-zhi, PAN Lü-rang. Research on zeolite catalyst for synthesis of methyl phenyl ether with phenol and methanol[J]. Acta Pet Sin (Pet Process Sect), 1998,14:45-49.  

    10. [10]

      ZHOU Xiu-jing, ZHU Xiao-mei, LI Xue-mei, WANG Zhen-lü, LIU Gang, JIA Ming-jun, ZHANG Wen-xiang. Vapour-phase O-methylation of catechol with methanol on SiO2-supported ammonium metatungstate catalysts[J]. Chin J Catal, 2008,29(7):671-676.  

    11. [11]

      SAMOLADA M C, GRIGORIADOU E, KIPARISSIDES Z, VASALOS I A. Selective O-alkylation of phenol with methanol over sulfates supported onγ-Al2O3[J]. J Catal, 1995,152(1):52-62. doi: 10.1006/jcat.1995.1059

    12. [12]

      VELU S, SWAMY C S. Alkylation of phenol with methanol over magnesium-aluminium calcined hydrotalcites[J]. Appl Catal A: Gen, 1994,119(2):241-252. doi: 10.1016/0926-860X(94)85194-8

    13. [13]

      SARALA DEVI G, GIRIDHAR D, REDDY B M. Vapour phase O-alkylation of phenol over alkali promoted rare earth metal phosphates[J]. J Mol Catal A: Chem, 2002,181(1/2):173-8.  

    14. [14]

      WANG Yan-Li, ZHOU Zhou, WU Shu-jie. Phenol etherification with methanol on SiO2 supported K catalyst[J]. Petrkchem Technol, 2004,33:170-171.

    15. [15]

      BAL R, SIVASANKER S. Vapour phase selective O-alkylation of phenol over alkali loaded silica[J]. Appl Catal A: Gen, 2003,246(2):373-82. doi: 10.1016/S0926-860X(03)00082-6

    16. [16]

      AZZOUZ A, NISTOR D, MIRON D, URSU A V, SAJIN T, MONETTE F, NIQUETTE P, HAUSLER R. Assessment of acid-base strength distribution of ion-exchanged montmorillonites through NH3 and CO2-TPD measurements[J]. Thermochim Acta, 2006,449(1/2):27-34.  

    17. [17]

      XIN Qin, LUO Meng-fei. Modern Catalytic Research Methods[M]. Beijing: Science Press, 2009.

    18. [18]

      WU Juan-xia, XU Hua, ZHANG Jin. Raman spectroscopy of graphene[J]. Acta Chim Sin, 2014,72:301-318. doi: 10.6023/A13090936

    19. [19]

      DAVIS Z D, TATARCHUK B J. Understanding the dispersion of Ag on high surface area TiO2 supports using XPS intensity ratios[J]. Appl Surf Sci, 2015,353:679-85. doi: 10.1016/j.apsusc.2015.06.086

    20. [20]

      LIU Ying-jun, ZHAO Ming, GUO Qin-lin, GUI Lin-lin, XIE You-chang, TANG You-qi. Determination of the maximum monolayer dispersion and dispersed state for WO3 onγ-Al2O3[J]. Acta Chim Sin, 1985,43:728-732.

  • 加载中
    1. [1]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    2. [2]

      Weihan ZhangMenglu WangAnkang JiaWei DengShuxing Bai . Surface Sulfur Species Influence Hydrogenation Performance of Palladium-Sulfur Nanosheets. Acta Physico-Chimica Sinica, 2024, 40(11): 2309043-0. doi: 10.3866/PKU.WHXB202309043

    3. [3]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    4. [4]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    5. [5]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    6. [6]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    7. [7]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    8. [8]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    9. [9]

      Shuhong XiangLv YangYingsheng XuGuoxin CaoHongjian Zhou . Selective electrosorption of Cs(Ⅰ) from high-salinity radioactive wastewater using CNT-interspersed potassium zinc ferrocyanide electrodes. Acta Physico-Chimica Sinica, 2025, 41(9): 100097-0. doi: 10.1016/j.actphy.2025.100097

    10. [10]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    11. [11]

      Jun HuangPengfei NieYongchao LuJiayang LiYiwen WangJianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-0. doi: 10.1016/j.actphy.2025.100066

    12. [12]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    13. [13]

      Lihua HUANGJian HUA . Denitration performance of HoCeMn/TiO2 catalysts prepared by co-precipitation and impregnation methods. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 629-645. doi: 10.11862/CJIC.20230315

    14. [14]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    15. [15]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    16. [16]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    17. [17]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    18. [18]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    19. [19]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    20. [20]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

Metrics
  • PDF Downloads(13)
  • Abstract views(1385)
  • HTML views(162)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return