Citation: WU Bao-qiang, MA Xiao-xun, LIANG Bin, HAN Yun-da. Preparation of HZSM-5 zeolite assisted by glycerin and its catalytic performance for methane aromatization[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(7): 821-832. shu

Preparation of HZSM-5 zeolite assisted by glycerin and its catalytic performance for methane aromatization

  • Corresponding author: MA Xiao-xun, 13772424852@163.com
  • Received Date: 21 April 2020
    Revised Date: 14 June 2020

    Fund Project: the National Natural Science Foundation of China 21536009the Joint Funds of National Key R & D Program of China 2018YFB0604603The project was supported by the Joint Funds of National Key R & D Program of China (2018YFB0604603), the National Natural Science Foundation of China (21536009) and the Science and Technology Plan Projects of Shaanxi Province, China (2017ZDCXL-GY-10-03, 2018ZDXM-GY-167)the Science and Technology Plan Projects of Shaanxi Province, China 2018ZDXM-GY-167the Science and Technology Plan Projects of Shaanxi Province, China 2017ZDCXL-GY-10-03

Figures(15)

  • HZSM-5 zeolite was synthesized under hydrothermal condition with TEOS as silicon source and glycerin as auxiliary agent. The effects of glycerol addition and crystallization time on the grain size, relative crystallinity and acidity of HZSM-5 molecular sieves and their catalytic performance for anaerobic aromatization of methane were investigated. XRD, SEM, NH3-TPD and other analytical methods were used to characterize the HZSM-5 molecular sieve samples synthesized under different conditions. The results show that the relative crystallinity of HZSM-5 molecular sieve can be increased through adding certain amount of glycerol adjuvant and adjusting the crystallization time, meanwhile, the formation of amorphous SiO2 can be suppressed and the acid content can be increased. The HZSM-5 prepared with glycerol assistance shows excellent catalytic performance in methane anaerobic aromatization. Compared with the HZSM-5 catalyst synthesized without the addition of glycerin, the methane conversion rate, benzene selectivity and aromatic selectivity are all greatly improved, and it has better stability and resistance to carbon deposition.
  • 加载中
    1. [1]

      NIKOLAY K, FERDY J A G C, GUANNA L, EVGENY U, BRAHIM M, ALEXANDRA S G W, EVGENYA P, EMIEL J M H. Stable Mo/HZSM-5 methane dehydroaromatization catalysts optimized for high-temperature calcination-regeneration[J]. J Catal, 2016,346:125-133.  

    2. [2]

      HUANG Xin, JIAO Xi, LIN Ming-gui, JIA Li-tao, HOU Bo, LI De-bao. Research progress in the direct nonoxidative dehydroaromatization of methane to aromatics[J]. J Fuel Chem Technol, 2018,46(9):1087-1100.  

    3. [3]

      XU Y D, LIU S T, WANG L S. Methane activation without using oxi-dants over Mo/HZSM-5 zeolite catalysts[J]. Catal Lett, 1995,30(1/4):135-149.  

    4. [4]

      WECKHUYSEN B M, WANG D J, ROSYNEK M P. Conversion of methane tobenzene over transition metal ion ZSM-5 Zeolites[J]. Catal, 1998,175(2):338-346.  

    5. [5]

      CHENG X, YAN P, ZHANG X, YANG F, DAI C, LI D, MA X. Enhanced methane dehydroaromatization in the presence of CO2 over Fe-and Mg-modified Mo/ZSM-5[J]. Mol Catal, 2017,437:114-120.  

    6. [6]

      MA Ji-yuan, ZHANG Hang-fei, YIN Jin-lian, ZHOU Rong, LU Jiang-yin. Methane dehydroaromatization over Ni modified Mo-Co/HZSM-5 catalysts[J]. Nat Gas Ind, 2016,41(2):19-24.  

    7. [7]

      WANG Dong-jie. Study on the catalytic performance of additive modified Mo/HZSM-5 catalysts for methane aromatization under O2-free condition[D]. Hangzhou: Zhejiang University, 2003. 

    8. [8]

      ZHAO Jin-ming. Study on the modification of Mo/HZSM-5 Catalyst by In and Pd promoters[D]. Dalian: University of Chinese Academy of Sciences, 2002. 

    9. [9]

      XU C, GUAN J Q, WU S J, JIA M J, WU T H, KAN Q B. Catalystic performance of zeolite ITQ-13 with 9-and 10-member rings for methane dehydroaromation[J]. React Kinet Mech Catcd, 2010,99:193-199.  

    10. [10]

      WANG H, PINNAVAIA T J. MFI zeolite with small and uniform intracrystal mesopores[J]. Angew Chem Int Ed, 2006,45:7603-7606.  

    11. [11]

      XIAO F, WANG L, YIN C, LIN K, DI Y, LI J, XU R, SU D. Catalytic properties of hierarchical mesoporous zeolites templated with a mixture of small organic ammonium salts and mesoscale cationicpolymers[J]. Angew Chem Int Ed, 2006,45:3090-3093.  

    12. [12]

      WANG Di-yong. The Synthesis of Hierarchical ZSM-5 Zeolite and the Performance in Methane Dehydroaromatization[D]. Dalian: Dalian University of Technology, 2012. 

    13. [13]

      YANG Jian-hua, YU Su-xia, HU Hui-ye, CHU Nai-bo, LU Jin-ming, YIN De-hong, WANG Jin-qu. Synthesis of hierarchical HZSM-5 microspheres without second template and their application in methane dehydroaromatization[J]. Chin J Catal, 2011,32(2):362-367.  

    14. [14]

      WANG Tao, LIU Zhi-ling, ZHANG Ju, ZHANG Yuan, ZHANG Wei, LU Yong-bin. New advances in methane non-oxidative aromatization[J]. Nat Gas Ind, 2018,43(2):127-134.  

    15. [15]

      WANG L, TAO L, XIE M, XU G, HUANG J, XU Y. Dehydrogenation and aromatization of methane under non-oxidizing conditions[J]. Catal Lett, 1993,21(1/2):35-41.  

    16. [16]

      ARGAUER R J, LANDOLTG R. Crystalline zeolite ZSM-5 and method of preparing the same: US, 3702886[P]. 1972.

    17. [17]

      STANCIULESCU M, CARAVAGGIO G, DOBRI A, MOIR J, BURICH R, CHARLAND J P, BULSINK P. Low-temperature selective catalytic reduction of NOx with NH3 over Mn-containing catalysts[J]. Appl Catal B:Environ, 2012,123-124:229-240.  

    18. [18]

      ZHANG Wei, ZHANG Kun, YONG Xiao-jing, WANG Feng, WEN Peng-yu. Effect of silica soures on synthesis of ZSM-5 and their catalytic properties for MTP reaction[J]. Nat Gas Ind, 2015,40(1):13-17.  

    19. [19]

      LI Wen-lin, ZHENG Jin-yu, LUO Yi-bin, DA Zhi-jian. Recent advances in preparation, mechanism and application of hierarchical zeolite[J]. Acta Petr Sin(Pet Process Sect), 2016,32(6):1273-1286.  

    20. [20]

      HU Yu, YANG Xue, TIAN Hui-ping. Research advance in synthesis hierarchical ZSM-5 zeolites with soft templates[J]. Ind Catal, 2020,28(1):1-10.  

    21. [21]

      LIU Bao-yu. Synthesis, catalytic property evaluation and computer simulation study of hierarchical zeolites[D]. Guangzhou: South China University of Technology, 2015. 

    22. [22]

      LI Y, YU J. New stories of zeolite structures:Their descriptions, determinations, predictions, and evaluations[J]. Chem Rev, 2014,114(14):7268-316.  

    23. [23]

      VALTCHEV V, MAJANO G, MINTOVA S, JAVIER P R. Tailored crystalline microporous materials by post-synthesis modification[J]. Chem Soc Rev, 2013,44(17):263-290.  

    24. [24]

      GAO Min, LIU Chun-yan, WANG Ren, GUO Hong-chen. Synthesis of ZSM-5 zeolites from ethanol-containing aluminosilicate gels[J]. Chemistry, 2009,72(12):1097-1103.  

    25. [25]

      STOCKER M. Methanol-to-hydrocarbons:Catalytic materials and their behavior[J]. Microporou Mesoporou Mater, 1999,29:3-48.  

    26. [26]

      OLSBYE U, SVELLE S, BJORGEN M, BEATO P, JANSSENS T V W, JOENSEN F, BORDIGA S, LILLERUD K P. Conversion of methanol to hydrocarbons:How zeolite cavity and pore size controls product selectivity[J]. Angew Chem Int Ed, 2012,51:5810-5831.  

    27. [27]

      SUN Hong-man, WANG You-he, YIN Han-mei, XU Ben-jing, LI Yang, YAN Zi-feng. Synthesis of ZSM-5 zeolite with high molar ratio of silica to alumina by hydrothermal crystallization method with template[J]. Bull Chin Ceram Soc, 2015,34(4):1121-1126+1132.  

    28. [28]

      ZHOU Hao, FU Ting-jun, LI Zhong. Recent advance in green synthesis of ZSM-5 zeolite[J]. Nat Gas Ind, 2015,40(4):79-85.  

    29. [29]

      SEDEL NIKOVA O V, STEPANOV A A, ZAIKOVSKII V I, KOROBITSYNA L L, VOSMERIKOV A V. Preparation method effect on the physicochemical and catalytic properties of a methane dehydroaromatization catalyst[J]. Kinet Catal, 2017,58(1):51-57.  

    30. [30]

      CHEN X, YAN W, SHEN W, YU J, CAO X, XU R. Morphology control of self-stacked silicalite-1 crystals using microwave-assisted solvothermal synthesis[J]. Microporous Mesoporous Mater, 2007,104(1/3):296-304.  

    31. [31]

      LONG Ying-cai. The crystallization of zeolites in diethanolamine-glycerol-Na2O-SiO2-Al2O3-H2O system[J]. Acta Chim Sin, 1984,42(6):523-528.  

    32. [32]

      DENG Z, ZHANG Y, ZHENG J, ZHU K, ZHOU X. A hierarchical bulky ZSM-5 zeolite synthesized via glycerol-mediated crystallization using a mesoporous steam-treated dry gel as the precursor[J]. New J Chem, 2015,39(10):7777-7780.  

    33. [33]

      XU Ru-ren, PANG Wen-qin, YU Ji-hong. Molecular Sieve and Porous Material Chemistry[M]. Beijing:Science Press, 2004.

    34. [34]

      LIU Yu, HAN Shun-yu, CAO Cui-ping, ZHANG Huan-huan, LIU Wei-ying, JIANG Nan-zhe. Synthesis of ZSM-5 molecular sieve with glycerol assisted seed crystallization[J]. Acta Pet Sin, 2018,34(5):891-896.  

    35. [35]

      FAN Su-bing, SHEN Da, LV Jun-min, ZHANG Jian-li, ZHAO Tian-sheng. Properties of hierarchical ZSM-5 and its effect on reaction of methanol to propylene[J]. Nat Gas Ind, 2015,40(1):1-5.  

    36. [36]

      YIN Jian-jun, XING Wei-jing, LI Yu-bo, ZHANG Jiao, ZHANG Zhong-dong, GAO Xiong-hou. The influence factors of the crystallinity and crystal size of ZSM-5 zeolite[J]. J Mol Catal A:Chem, 2012,26(2):162-168.  

    37. [37]

      LIU Wen-yan, WANG Hua, GAO Wen-gui, ZHANG Ming-yu, ZHANG Feng-jie. Effects of different promoters on the hydrogenation of carbon dioxide over catalysts for methanol synthesis[J]. Mater Rev, 2012,26(6):96-99.  

    38. [38]

      RICHARD W B, YOUNG H K, ANNE H. Structure and density of Mo and acid sites in Mo-exchanged HZSM-5 catalysts for nonoxidative methane conversion[J]. J Phys Chem B, 1999,103(28):5787-5796.  

    39. [39]

      YANG Ping, XIN Jing, LI Ming-feng, NIE Hong. Effect of Mo and W oxides on the structure and acidity of Y zeolite[J]. Acta Pet Sin, 2011,27(5):668-673.  

    40. [40]

      LIU H, SU L, WANG H, SHEN W, BAO X, XU Y. The chemical nature of carbonaceous deposits and their role in methane dehydroaromatization on Mo/MCM-22 catalysts[J]. Appl Catal A:Gen, 2002,236(1/2):263-280.  

    41. [41]

      ZHANG H, SHAO S, XIAO R, SHEN D, ZENG J. Characterization of coke deposition in the catalytic fast pyrolysis of biomass derivates[J]. Energy Fuels, 2014,28(1):52-57.  

    42. [42]

      MA D, WANG D, SU L, XU Y, BAO X. Carbonaceous deposition on Mo/HMCM-22 catalysts for methane aromatization:A TP technique investigation[J]. J Catal, 2002,208(2):260-269.  

  • 加载中
    1. [1]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    2. [2]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    3. [3]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    4. [4]

      Zhongyan Cao Youzhi Xu Menghua Li Xiao Xiao Xianqiang Kong Deyun Qian . Electrochemically Driven Denitrative Borylation and Fluorosulfonylation of Nitroarenes. University Chemistry, 2025, 40(4): 277-281. doi: 10.12461/PKU.DXHX202407017

    5. [5]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

    6. [6]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    7. [7]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    8. [8]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    10. [10]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    11. [11]

      Xin FengKexin GuoChunguang JiaBowen LiuSuqin CiJunxiang ChenZhenhai Wen . Hydrogen Generation Coupling with High-Selectivity Electrocatalytic Glycerol Valorization into Formate in an Acid-Alkali Dual-Electrolyte Flow Electrolyzer. Acta Physico-Chimica Sinica, 2024, 40(5): 2303050-0. doi: 10.3866/PKU.WHXB202303050

    12. [12]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    13. [13]

      Geyang Song Dong Xue Gang Li . Recent Advances in Transition Metal-Catalyzed Synthesis of Anilines from Aryl Halides. University Chemistry, 2024, 39(2): 321-329. doi: 10.3866/PKU.DXHX202308030

    14. [14]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    15. [15]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    16. [16]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    17. [17]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    18. [18]

      Pei LiYuenan ZhengZhankai LiuAn-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 2406012-0. doi: 10.3866/PKU.WHXB202406012

    19. [19]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    20. [20]

      Zeyu LiuWenze HuangYang XiaoJundong ZhangWeijin KongPeng WuChenzi ZhaoAibing ChenQiang Zhang . Nanocomposite Current Collectors for Anode-Free All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2305040-0. doi: 10.3866/PKU.WHXB202305040

Metrics
  • PDF Downloads(6)
  • Abstract views(1068)
  • HTML views(292)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return