Citation: Liu Jia, Zhang Lei, Shen Gangyi. Research Advance on Immobilized Enzyme Using Graphene as Carrier[J]. Chemistry, ;2017, 80(1): 41-46. shu

Research Advance on Immobilized Enzyme Using Graphene as Carrier

  • Corresponding author: Shen Gangyi, sgy@iccas.ac.cn
  • Received Date: 15 June 2016
    Accepted Date: 31 July 2016

Figures(7)

  • The immobilized enzyme has been widely applied to the food and medicine industrial production, and micro biochemical detection field for its advantages of high efficiency catalysis, recyclability and easy separation. The performance of immobilized enzyme is closely related to the carrier materials. As a new type of nano materials, graphene has excellent physical and chemical properties, which is an ideal carrier for the immobilization of enzyme. This article focused on the technology of immobilized enzyme using graphene as carrier for the past few years. The immobilization methods including physical adsorption, chemical bonding and encapsulation were particularly discussed. The recent applications of immobilized enzyme in the field of enzyme micro-reaction and biosensor were reviewed. The prospects of its future development were also outlined.
  • 加载中
    1. [1]

       

    2. [2]

       

    3. [3]

      J Iqbal, S Iqba, C E Müller. Analyst, 2013, 138:3104-3116. 

    4. [4]

      J M Nelson, E G Griffin. J. Am. Chem. Soc., 1916, 38:1109-1115. 

    5. [5]

    6. [6]

      Y Li, X Q Xu, C H Deng et al. J. Proteome Res., 2007, 6:3849-3855. 

    7. [7]

      L Wang, R Xu, Y Chen et al. J. Mol. Catal. B-Enzym., 2011, 69:120-126. 

    8. [8]

      T T Trupti, K Kikuo, R Pankaj et al. Langmuir, 2015, 31:13054-13061. 

    9. [9]

      S J Guo, H Li, J Liu et al. Appl. Mater. Interf., 2015, 7:20937-20944. 

    10. [10]

      G L Zhang, M L Yang, D Q Cai et al. Appl. Mater. Interf., 2014, 6:8042-8047. 

    11. [11]

      X Y Mu, J Qiao, L Qi et al. Appl. Mater. Interf., 2014, 6:21346-21354. 

    12. [12]

      X Q You, J P James. Sensor. Actuat. B, 2014, 202:1357-1365. 

    13. [13]

      K S Novoselov, A K Geim, S V Morozov et al. Science, 2004, 306:666-669. 

    14. [14]

      A K Geim, K S Novoselov. Nat. Mater., 2007, 6:183-191. 

    15. [15]

      Z G Yin, W W Zhao, M M Tian et al. Analyst, 2014, 139:1973-1979. 

    16. [16]

      B Liang, L Fang, G Yang et al. Biosens. Bioelectron., 2013, 43:131-136. 

    17. [17]

      Y P Li, Y F Bai, G Y Han et al. Sensor. Actuat. B., 2013, 185:706-712. 

    18. [18]

      P Onor, T Atul, A P F Turner et al. Biosens. Bioelectron., 2013, 49:53-62. 

    19. [19]

      D D Pan, Y Y Gua, H Z Lan. Anal. Chim. Acta, 2015, 853:297-302. 

    20. [20]

      J Yang, S Y Deng, J P Lei et al. Biosens. Bioelectron., 2011, 29:159-166. 

    21. [21]

      R S Dey, C R Raj. Biosens. Bioelectron., 2014, 62:357-364. 

    22. [22]

      H M Bao, Q W Chen, L Y Zhang. Analyst, 2011, 136:5190-5196. 

    23. [23]

      S R Cao, L Zhang, Y Q Chai et al. Talanta, 2013, 109:167-172. 

    24. [24]

      L M Lu, X L Qiu, X B Zhang et al. Biosens. Bioelectron., 2013, 45:102-107. 

    25. [25]

      T Y Yeh, C I Wang, H T Chang. Talanta, 2013, 115:718-723. 

    26. [26]

      B Jiang, K J Jang, Q Zhao. J. Chromatogr. A, 2012, 1254:8-13. 

    27. [27]

      G B Xu, X Y Chen, J H Hu et al. Analyst, 2012, 137:2757-2761. 

    28. [28]

      Q Zeng, J S Cheng X F Liu et al. Biosens. Bioelectron., 2011, 26:3456-3463. 

    29. [29]

      J Y Liu, E K Wang, J Wang et al. Electrochim. Acta. 2015, 161:17-22.

    30. [30]

      Y Liu, Q Li, Y Y Feng et al. Chem. Lett., 2014, 68(6):732-738.

    31. [31]

      M M Barsan, M David, M Florescu et al. Bioelectrochemistry, 2014, 99:46-52. 

    32. [32]

      W Wen, W Chen, Q Q Ren et al. Sensor Actuat. B, 2012, 166-167:444-450.

    33. [33]

      L J Bai, B Yan, Y Q Chai et al. Analyst, 2013, 138:6595-6599. 

    34. [34]

      J Jiao, A Z Miao, X Y Zhang et al. Analyst, 2013, 138, 1645-1468.

    35. [35]

      J Q Liu, N Kong, A H Li. Analyst, 2013, 138:2567-2575. 

    36. [36]

      D Zheng, S K Vashist, K A Rubeaan et al. Talanta, 2012, 99, 22-28.

    37. [37]

      Q Zeng, J S Cheng, L H Tang et al. Adv. Funct. Mater., 2010, 20:3366-3372. 

    38. [38]

      Q L Sheng, M Z Wang, J B Zheng et al. Chin. J. Anal. Chem., 2009, 37(11):1557-1565. 

    39. [39]

      L Li, H Hu, L Deng. Talanta, 2013, 113:1-6. 

    40. [40]

      T Liu, H C Su, X J Qu et al. Sensor. Actuat. B., 2011, 160:1255-1261. 

    41. [41]

      L F Gao, H L Zhang, H Cui. Biosens. Bioelectron., 2014, 57:65-70. 

  • 加载中
    1. [1]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    2. [2]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    3. [3]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    4. [4]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    5. [5]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    6. [6]

      Tiantian Zheng Huiyi Wang Huimin Li Xuanhe Liu Hong Shang . Anti-Counterfeiting National Salvation Chronicle of 006. University Chemistry, 2024, 39(9): 254-258. doi: 10.3866/PKU.DXHX202307032

    7. [7]

      Wenli FENGLu ZHAOYunfeng BAIFeng FENG . Research progress on ultralong room temperature phosphorescent carbon dots. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 833-846. doi: 10.11862/CJIC.20240308

    8. [8]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    9. [9]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    10. [10]

      Laiying Zhang Yaxian Zhu . Exploring the Silver Family. University Chemistry, 2024, 39(9): 1-4. doi: 10.12461/PKU.DXHX202409015

    11. [11]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    12. [12]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    13. [13]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    14. [14]

      Jie XIEHongnan XUJianfeng LIAORuoyu CHENLin SUNZhong JIN . Nitrogen-doped 3D graphene-carbon nanotube network for efficient lithium storage. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1840-1849. doi: 10.11862/CJIC.20240216

    15. [15]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    16. [16]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    17. [17]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    18. [18]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    19. [19]

      Xingyuan Lu Yutao Yao Junjing Gu Peifeng Su . Energy Decomposition Analysis and Its Application in the Many-Body Effect of Water Clusters. University Chemistry, 2025, 40(3): 100-107. doi: 10.12461/PKU.DXHX202405074

    20. [20]

      Yue-Zhou ZhuKun WangShi-Sheng ZhengHong-Jia WangJin-Chao DongJian-Feng Li . Application and Development of Electrochemical Spectroscopy Methods. Acta Physico-Chimica Sinica, 2024, 40(3): 2304040-0. doi: 10.3866/PKU.WHXB202304040

Metrics
  • PDF Downloads(43)
  • Abstract views(5616)
  • HTML views(2241)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return