Citation: Ye Xingke, Zhou Qianlong, Wan Zhongquan, Jia Chunyang. Research Progress in Electrode Materials and Devices of Flexible Supercapacitors[J]. Chemistry, ;2017, 80(1): 10-33, 76. shu

Research Progress in Electrode Materials and Devices of Flexible Supercapacitors

  • Corresponding author: Jia Chunyang, cyjia@uestc.edu.cn
  • Received Date: 26 May 2016
    Accepted Date: 19 July 2016

Figures(22)

  • Supercapacitor (SC), also called electrochemical capacitor, which has higher power density and longer cycling life than lithium ion battery as well as higher energy density than dielectric capacitor, is a kind of promising energy storage device. The different kinds of flexible and wearable electronic devices are emerging with consumers' increasing requirements for electronic devices. Flexible SC, which is a kind of portable energy storage device, has attracted much attention. The two-dimensional planar-structure and one-dimensional fiber-shaped SCs have been developed rapidly with the flexible electronic devices advancing. In this review, the energy storage mechanism of SCs, the diverse performance metrics and evaluation for SCs as a foundation are first introduced to understand different research approaches. Then, the current state-of-the-art progress in devices' structure design and electrode materials fabrication of the flexible two-dimensional planar-structure and one-dimensional fiber-shaped SCs are summarized. Last, perspectives on the future development of flexible SCs and highlighted key technical challenges with hope of stimulating further research progress are presented.
  • 加载中
    1. [1]

      H W Chen, C Y Hong, C W Kung et al. J. Power Sources, 2015, 288:221-228. 

    2. [2]

      T Chen, L B Qiu, Z B Yang et al. Angew. Chem. Int. Ed., 2012, 51(48):11977-11980. 

    3. [3]

      K Jost, D P Durkin, L M Haverhals et al. Adv. Energy Mater., 2015, 5:1401286. 

    4. [4]

      Q Wu, Y Xu, Z Yao et al. ACS Nano, 2010, 4(4):1963-1970. 

    5. [5]

      A Pyattaev, K Johnsson, S Andreev et al.IEEE Wireless Commun., 2015, 22:12-18.

    6. [6]

      J W Park, J Jang. Carbon, 2015, 87:275-281. 

    7. [7]

      R F Service. Science, 2003, 301(5635):909-911. 

    8. [8]

      Y Fu, H Wu, S Ye et al. Energy Environ. Sci., 2013, 6(3):805-812. 

    9. [9]

      K Jost, G Dion, Y Gogotsi. J. Mater. Chem. A, 2014, 2(28):10776-10787. 

    10. [10]

      G Wang, L Zhang, J Zhang. Chem. Soc. Rev., 2012, 41(2):797-828. 

    11. [11]

      K Jost, D Stenger, C R Perez et al. Energy Environ. Sci., 2013, 6(9):2698-2705. 

    12. [12]

      M Beidaghi, Y Gogotsi. Energy Environ. Sci., 2014, 7(3):867-884. 

    13. [13]

      Y Huang, J Liang, Y Chen. Small, 2012, 8(12):1805-1834. 

    14. [14]

      M Zhi, C Xiang, J Li et al. Nanoscale, 2013, 5(1):72-88. 

    15. [15]

      X Chen, H Lin, P Chen et al. Adv. Mater., 2014, 26(26):4444-4449. 

    16. [16]

      X Peng, L Peng, C Wu et al. Chem. Soc. Rev., 2014, 43(10):3303-3323. 

    17. [17]

      X Lu, M Yu, G Wang et al. Energy Environ. Sci., 2014, 7(7):2160-2181. 

    18. [18]

      Z Weng, Y Su, D W Wang et al. Adv. Energy Mater., 2011, 1(5):917-922. 

    19. [19]

      G Zhao, F G Zhao, J Sun et al. Carbon, 2015, 94:114-119. 

    20. [20]

      Y Xu, C Y Chen, Z Zhao et al. Nano Lett., 2015, 15(7):4605-4610. 

    21. [21]

      F Liu, S Song, D Xue et al. Adv. Mater., 2012, 24(8):1089-1094. 

    22. [22]

      Z Bo, W Zhu, W Ma et al. Adv. Mater., 2013, 25(40):5799-5806. 

    23. [23]

      X Yang, J Zhu, L Qiu et al. Adv. Mater., 2011, 23(25):2833-2838. 

    24. [24]

      Y Xu, Z Lin, X Huang et al. ACS Nano, 2013, 7(5):4042-4049. 

    25. [25]

      M F El-Kady, V Strong, S Dubin et al. Science, 2012, 335(6074):1326-1330. 

    26. [26]

      M F El-Kady, R B Kaner. Nat. Commun., 2013, 4:1475. 

    27. [27]

      T Chen, H Peng, M Durstock et al. Sci. Rep., 2014, 4:3612.

    28. [28]

      Z Chen, D Zhang, X Wang et al. Adv. Mater., 2012, 24(15):2030-2036. 

    29. [29]

      H C Youn, S H Park, K C Roh et al. Curr. Appl. Phys., 2015, 15:S21-S26.

    30. [30]

      S K Ujjain, R Bhatia, P Ahuja et al. PLoS One, 2015, 10(7):e0131475.

    31. [31]

      A K Geim, I V Grigorieva. Nature, 2013, 499(7459):419-425. 

    32. [32]

      S Park, R S Ruoff. Nat. Nanotechnol., 2009, 4(4):217-224. 

    33. [33]

      P Li, C Kong, Y Shang et al. Nanoscale, 2013, 5(18):8472-8479. 

    34. [34]

      Y Z Zheng, H Y Ding, M L Zhang. Mater. Res. Bull., 2009, 44(2):403-407. 

    35. [35]

      Y Huang, Y Li, Z Hu et al. J. Mater. Chem. A, 2013, 1(34):9809-9813. 

    36. [36]

      Y X Zhang, M Huang, F Li et al. J. Power Sources, 2014, 246:449-456. 

    37. [37]

      C Hao, F Wen, J Xiang et al. Adv. Funct. Mater., 2014, 24(42):6700-6707. 

    38. [38]

      C Yuan, L Yang, L Hou et al. Energy Environ. Sci., 2012, 5(7):7883-7887. 

    39. [39]

      A Ramadoss, S J Kim. Electrochim. Acta, 2014, 136:105-111. 

    40. [40]

      H Xu, X Li, G Wang. J. Power Sources, 2015, 294:16-21. 

    41. [41]

      F Grote, Y Lei. Nano Energy, 2014, 10:63-70. 

    42. [42]

      P Tang, L Han, L Zhang et al. ChemElectroChem, 2015, 2(7):949-957. 

    43. [43]

      M F Warsi, I Shakir, M Shahid et al. Electrochim. Acta, 2014, 135:513-518. 

    44. [44]

      N R Chiou, C Lui, J Guan et al. Nat. Nanotechnol., 2007, 2(6):354-357. 

    45. [45]

      J Xu, K Wang, S Z Zu et al. ACS Nano, 2010, 4(9):5019-5026. 

    46. [46]

      K Wang, W Zou, B Quan et al. Adv. Energy Mater., 2011, 1(6):1068-1072. 

    47. [47]

      K Wang, P Zhao, X Zhou et al. J. Mater. Chem., 2011, 21(41):16373-16378. 

    48. [48]

      K Wang, H Wu, Y Meng et al. Energy Environ. Sci., 2012, 5(8):8384-8389. 

    49. [49]

      Y Meng, K Wang, Y Zhang et al. Adv. Mater., 2013, 25(48):6985-6990. 

    50. [50]

      J Chen, C Jia, Z Wan. Synth. Met., 2014, 189:69-76. 

    51. [51]

      W S Hummers, R E Offeman. J. Am. Chem. Soc., 1958, 80:1339-1339. 

    52. [52]

      J Chen, C Jia, Z Wan. Electrochim. Acta, 2014, 121:49-56. 

    53. [53]

      Q Zhou, X Ye, Z Wan et al. J. Power Sources, 2015, 296:186-196. 

    54. [54]

      W Liu, C Lu, X Wang et al. ACS Nano, 2015, 9(2):1528-1542. 

    55. [55]

      X Cai, M Peng, X Yu et al. J. Mater. Chem. C, 2014, 2(7):1184-1200. 

    56. [56]

      L V Thong, H Kim, A Ghosh et al. ACS Nano, 2013, 7(7):5940-5947. 

    57. [57]

      D Yu, Q Qian, L Wei et al. Chem. Soc. Rev., 2015, 44(3):647-662. 

    58. [58]

      W Zeng, L Shu, Q Li et al. Adv. Mater., 2014, 26(31):5310-5336. 

    59. [59]

      J Bae, M K Song, Y J Park et al. Angew. Chem. Int. Ed., 2011, 50(7):1683-1687. 

    60. [60]

      S H Aboutalebi, R Jalili, D Esrafilzadeh et al. ACS Nano, 2014, 8(3):2456-2466. 

    61. [61]

      Y Meng, Y Zhao, C Hu et al. Adv. Mater., 2013, 25(16):2326-2331. 

    62. [62]

      M Miao. Carbon, 2011, 49:3755-3761. 

    63. [63]

      X Chen, L Qiu, J Ren et al. Adv. Mater., 2013, 25(44):6436-6441. 

    64. [64]

      Z Yang, J Deng, X Chen et al. Angew. Chem. Int. Ed., 2013, 52(50):13453-13457. 

    65. [65]

      J Ren, W Bai, G Guan et al. Adv. Mater., 2013, 25(41):5965-5970. 

    66. [66]

      Y Fu, X Cai, H Wu et al. Adv. Mater., 2012, 24(42):5713-5718. 

    67. [67]

      L Kou, T Huang, B Zheng et al. Nat. Commun., 2014, 5:3754.

    68. [68]

      F Su, M Miao, H Niu et al. ACS Appl. Mater. Interf., 2014, 6(4):2553-2560. 

    69. [69]

      H Xu, X Hu, Y Sun et al. Nano Res., 2015, 8(4):1148-1158. 

    70. [70]

      D Harrison, F Qiu, J Fyson et al. Phys. Chem. Chem. Phys., 2013, 15(29):12215-12219. 

    71. [71]

      S T Senthilkumar, R K Selvan. Phys. Chem. Chem. Phys., 2014, 16(29):15692-15698. 

    72. [72]

      Y Li, K Sheng, W Yuan et al. Chem. Commun., 2013, 49(3):291-293. 

    73. [73]

      K Jost, D P Durkin, L M Haverhals et al. Adv. Energy Mater., 2015, 5:1401286. 

    74. [74]

      Z Yu, J Thomas. Adv. Mater., 2014, 26(25):4279-4285. 

    75. [75]

      H Xu, X Hu, Y Sun et al. Nano Res., 2014, 8(4):1148-1158.

    76. [76]

      X Ye, Q Zhou, C Jia et al. Electrochim. Acta, 2016, 206:155-164. 

    77. [77]

      Q Zhou, C Jia, X Ye et al. J. Power Sources, 2016, 327:365-373. 

    78. [78]

      L Liu, Y Yu, C Yan et al. Nat. Commun., 2015, 6:7260. 

    79. [79]

      N Liu, W Ma, J Tao et al. Adv. Mater., 2013, 25(35):4925-4931. 

    80. [80]

      Y Gogotsi, P Simon. Science, 2011, 334(6058):917-918. 

  • 加载中
    1. [1]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    2. [2]

      Huayan LiuYifei ChenMengzhao YangJiajun Gu . Strategies for enhancing capacity and rate performance of two-dimensional material-based supercapacitors. Acta Physico-Chimica Sinica, 2025, 41(6): 100063-0. doi: 10.1016/j.actphy.2025.100063

    3. [3]

      Zhaomei LIUWenshi ZHONGJiaxin LIGengshen HU . Preparation of nitrogen-doped porous carbons with ultra-high surface areas for high-performance supercapacitors. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 677-685. doi: 10.11862/CJIC.20230404

    4. [4]

      Jin CHANG . Supercapacitor performance and first-principles calculation study of Co-doping Ni(OH)2. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1697-1707. doi: 10.11862/CJIC.20240108

    5. [5]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    6. [6]

      Xinpeng LIULiuyang ZHAOHongyi LIYatu CHENAimin WUAikui LIHao HUANG . Ga2O3 coated modification and electrochemical performance of Li1.2Mn0.54Ni0.13Co0.13O2 cathode material. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1105-1113. doi: 10.11862/CJIC.20230488

    7. [7]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    8. [8]

      Zhuo WangXue BaiKexin ZhangHongzhi WangJiabao DongYuan GaoBin Zhao . MOF-Templated Synthesis of Nitrogen-Doped Carbon for Enhanced Electrochemical Sodium Ion Storage and Removal. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-0. doi: 10.3866/PKU.WHXB202405002

    9. [9]

      Qi LiPingan LiZetong LiuJiahui ZhangHao ZhangWeilai YuXianluo Hu . Fabricating Micro/Nanostructured Separators and Electrode Materials by Coaxial Electrospinning for Lithium-Ion Batteries: From Fundamentals to Applications. Acta Physico-Chimica Sinica, 2024, 40(10): 2311030-0. doi: 10.3866/PKU.WHXB202311030

    10. [10]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    11. [11]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    12. [12]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    13. [13]

      Jiahong ZHENGJingyun YANG . Preparation and electrochemical properties of hollow dodecahedral CoNi2S4 supported by MnO2 nanowires. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1881-1891. doi: 10.11862/CJIC.20240170

    14. [14]

      Hongren RONGGexiang GAOZhiwei LIUKe ZHOULixin SUHao HUANGWenlong LIUQi LIU . High-performance supercapacitor based on 1D cobalt-based coordination polymer. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1183-1195. doi: 10.11862/CJIC.20250034

    15. [15]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    16. [16]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    17. [17]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    18. [18]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    19. [19]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    20. [20]

      Kuaibing Wang Honglin Zhang Wenjie Lu Weihua Zhang . Experimental Design and Practice for Recycling and Nickel Content Detection from Waste Nickel-Metal Hydride Batteries. University Chemistry, 2024, 39(11): 335-341. doi: 10.12461/PKU.DXHX202403084

Metrics
  • PDF Downloads(679)
  • Abstract views(34654)
  • HTML views(8737)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return