Citation: LI Wen-yue, WU Shi-yong, WU You-qing, HUANG Sheng, GAO Jin-sheng. Pore structure characterization of coconut shell char with narrow microporosity[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(3): 297-305. shu

Pore structure characterization of coconut shell char with narrow microporosity

  • Corresponding author: WU Shi-yong, wsy@ecust.edu.cn
  • Received Date: 13 December 2018
    Revised Date: 16 January 2019

    Fund Project: the Fundamental Research Funds for the Central Universities 222201718003The project was supported by the Fundamental Research Funds for the Central Universities (222201718003) and Projects of the Shanghai Science and Technology Committee (17DZ1202604)Projects of the Shanghai Science and Technology Committee 17DZ1202604

Figures(7)

  • To get more insight into the pore structure characterization of nanoporous biomass chars, different probe molecules, models, and calibration steps were used and compared. The coconut shell chars (CSCs) were prepared under a steam atmosphere and characterized using N2, Ar, and CO2 adsorption. The results show that coconut shell chars are suitable for further activation, due to the high carbon content and abundant porosity. Ar adsorption with application of Non-Local Density Functional Theory (NLDFT) model can more accurately characterize the pore structure of CSC. When the calibration step is performed before adsorption measurement, the important results of N2 and Ar adsorption, such as pores size distribution (PSD) and isotherm, are affected by pore blocking, leading to the erroneous understanding of CSC in special applications. Vacuum treatment at 273 K for 1 h after He calibration is enough to remove He, which could reduce effect of pore blocking.
  • 加载中
    1. [1]

      KHONDE R, CHAURASIA A. Rice husk gasification in a two-stage fixed-bed gasifier:Production of hydrogen rich syngas and kinetics[J]. Int J Hydrogen Energy, 2016,41(21):8793-8802. doi: 10.1016/j.ijhydene.2016.03.138

    2. [2]

      MARSH H, RODRÍGUEZ-REINOSO F. Applicability of Activated Carbon[M]. Amsterdam:Elsevier Science, 2006.

    3. [3]

      BENEDETTI V, PATUZZI F, BARATIERI M. Characterization of char from biomass gasification and its similarities with activated carbon in adsorption applications[J]. Appl Energy, 2018,227:92-99. doi: 10.1016/j.apenergy.2017.08.076

    4. [4]

      LI W, LIU H F, SONG X X. Multifractal analysis of Hg pore size distributions of tectonically deformed coals[J]. Int J Coal Geol, 2015,144-145:138-152. doi: 10.1016/j.coal.2015.04.011

    5. [5]

      ROUQUEROL J, AVNIR D, EVERETT D H, FAIRBRIDGE C, HAYNES M, PERNICONE N, RAMSAY J D F, SING K S W, UNGER K K. Guidelines for the characterization of porous solids[J]. Pure Appl Chem, 2009,66(8):1739-1758.  

    6. [6]

      FIROUZI M, RUPP E C, LIU C W, WILCOX J. Molecular simulation and experimental characterization of the nanoporous structures of coal and gas shale[J]. Int J Coal Geol, 2014,121(11):123-128.  

    7. [7]

      HAO S X, WEN J, YU XP, CHU W. Effect of the surface oxygen groups on methane adsorption on coals[J]. Appl Surf Sci, 2013,264:433-442. doi: 10.1016/j.apsusc.2012.10.040

    8. [8]

      GONZÁLEZ J F, ROMÁN S, GONZÁLEZ-GARCÍA C M, VALENTE NABAIS J M, LUIS ORTIZ A. Porosity development in activated carbons prepared from walnut shells by carbon dioxide or steam activation[J]. Ind Eng Chem Res, 2009,48(16):7474-7481. doi: 10.1021/ie801848x

    9. [9]

      VARGAS D P, GIRALDO L, MORENO-PIRAJÁN J C. Characterisation of granular activated carbon prepared by activation with CaCl2 by means of gas adsorption and immersion calorimetry[J]. Adsorption, 2016,22(4/6):717-723.  

    10. [10]

      RIOS R V R A, SILVESTRE-ALBERO J, SEPÚLVEDA-ESCRIBANO A, MOLINA-SABIO M, RODRÍGUEZ-REINOSOKINETIC F. Restrictions in the characterization of narrow microporosity in carbon materials[J]. Ieice T Electron, 2011,94(TENCON):1422-1426.  

    11. [11]

      LOWELL S, SHIELDS J E, THOMAS M A, THOMMES M. Characterization of porous solids and powders:Surface area, pore size and density[J]. Particle Technol, 2004,161620.  

    12. [12]

      TOSO J P, CORNETTE V, YELPO V A, ALEXANDRE DE OLIVEIRA J C, AZEVEDO D C S, LÓPEZ R H. Why the pore geometry model could affect the uniqueness of the PSD in AC characterization[J]. Adsorption, 2016,22(2):215-222.  

    13. [13]

      SILVESTRE-ALBERO J, SILVESTRE-ALBERO A, RODRÍGUEZ-REINOSO F, THOMMES M. Physical characterization of activated carbons with narrow microporosity by nitrogen (77.4 K), carbon dioxide (273 K) and argon (87.3 K) adsorption in combination with immersion calorimetry[J]. Carbon, 2012,50(9):3128-3133. doi: 10.1016/j.carbon.2011.09.005

    14. [14]

      EISAZADEH A, EISAZADEH H. N2-BET surface area and FESEM studies of lime-stabilized montmorillonitic and kaolinitic soils[J]. Environ Earth Sci, 2015,74(1):377-384.  

    15. [15]

      USTINOV , EUGENE A. Nitrogen adsorption on silica surfaces of nonporous and mesoporous materials[J]. Langmuir, 2008,24(13):6668-6675. doi: 10.1021/la704011z

    16. [16]

      YANG Z H, GAO Y. BET surface area analysis on microporous materials[J]. Mod Sci Instrum, 2010(1):97-102.  

    17. [17]

      JAGIELLO J, ANIA C O, PARRA J B, JAGIELLO L, PIS J J. Using DFT analysis of adsorption data of multiple gases including H for the comprehensive characterization of microporous carbons[J]. Carbon, 2007,45(5):1066-1071. doi: 10.1016/j.carbon.2006.12.011

    18. [18]

      TALU O, MYERS A L. Molecular simulation of adsorption:Gibbs dividing surface and comparison with experiment[J]. AIChE J, 2010,47(5):1160-1168.  

    19. [19]

      GUMMA S, TALU O. Gibbs dividing surface and helium adsorption[J]. Adsorption, 2003,9(1):17-28.  

    20. [20]

      HERRERA L, FAN C, DO D D, NICHOLSON D. A revisit to the Gibbs dividing surfaces and helium adsorption[J]. Adsorption, 2011,17(6):955-965. doi: 10.1007/s10450-011-9374-y

    21. [21]

      NEIMARK A V, LIN Y, RAVIKOVITCH P I, THOMMES M. Quenched solid density functional theory and pore size analysis of micro-mesoporous carbons[J]. Carbon, 2009,47(7):1617-1628. doi: 10.1016/j.carbon.2009.01.050

    22. [22]

      SILVESTRE-ALBERO J, SILVESTREALBERO A M, LLEWELLYN P L, RODRIGUEZREINOSO F. High-resolution N2 adsorption isotherms at 77.4 K:Critical effect of the He used during calibration[J]. J Phys Chem B, 2013,117(33):16885-16889.  

    23. [23]

      HE Q, CAO Y, MIAO Z, REN X F, CHEN J. Estimation of pores distribution in lignite utilizing Hg, H2O, CO2 and N2 as molecular probes[J]. Energy Fuels, 2017,31(12):13259-13265. doi: 10.1021/acs.energyfuels.7b02131

    24. [24]

      HUANG S, WU S Y, WU Y Q, GAO J S. Structure characteristics and gasification activity of residual carbon from updraft fixed-bed biomass gasification ash[J]. Energy Convers Manage, 2017,136:108-118. doi: 10.1016/j.enconman.2016.12.091

    25. [25]

      DE LANGE M F, VLUGT T J H, GASCON J, KAPTEIJN F. Adsorptive characterization of porous solids:Error analysis guides the way[J]. Microporous Mesoporous Mater, 2014,200:199-215. doi: 10.1016/j.micromeso.2014.08.048

    26. [26]

      OCCELLI M L, OLIVIER J P, PETRE A, AUROUX A. Determination of pore size distribution, surface area, and acidity in fluid cracking catalysts (FCCs) from Nonlocal Density Functional Theoretical models of adsorption and from microcalorimetry methods[J]. J Phys Chem B, 2003,107(17):4128-4136. doi: 10.1021/jp022242m

    27. [27]

      XIONG J, LIU X J, LIANG L X. Experimental study on the pore structure characteristics of the upper ordovician wufeng formation shale in the southwest portion of the sichuan basin[J]. J Nat Gas Sci Eng, 2015,22:530-539. doi: 10.1016/j.jngse.2015.01.004

    28. [28]

      FARAMARZI A H, KAGHAZCHI T, EBRAHIM H A, EBRAHIMI A A. A mathematical model for prediction of pore size distribution development during activated carbon preparation[J]. Chem Eng Commun, 2015,202(2):131-143.  

    29. [29]

      MOELLMER J, CELER E B, LUEBKE R, CAIRNS A J, STAUDT R, EDDAOUDI M, THOMMES M. Insights on adsorption characterization of metalorganic frameworks:A benchmark study on the novel socMOF[J]. Microporous Mesoporous Mater, 2010,129(3):345-353. doi: 10.1016/j.micromeso.2009.06.014

    30. [30]

      OKOLO G N, EVERSON R C, NEOMAGUS H W J P, ROBERTS M J, SAKUROVS R. Comparing the porosity and surface areas of coal as measured by gas adsorption, mercury intrusion and SAXS techniques[J]. Fuel, 2015,141:293-304. doi: 10.1016/j.fuel.2014.10.046

    31. [31]

      GIBBS J W. The Collected Works of J. W. Gibbs[M]. New York:Longmans and Green, 1928.

  • 加载中
    1. [1]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    2. [2]

      Qinming Wu Xiangju Meng . New zeolites with extra-stable extra-large-pore. Chinese Journal of Structural Chemistry, 2024, 43(6): 100310-100310. doi: 10.1016/j.cjsc.2024.100310

    3. [3]

      Jie MaJianxiang WangJianhua YuanXiao LiuYun YangFei Yu . The regulating strategy of hierarchical structure and acidity in zeolites and application of gas adsorption: A review. Chinese Chemical Letters, 2024, 35(11): 109693-. doi: 10.1016/j.cclet.2024.109693

    4. [4]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    5. [5]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    6. [6]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    7. [7]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    8. [8]

      Zhenzhen Zhao Meichen Jiao Jiejie Ling Han Jiang Yan Gao Hao Xu Hai-Qing Li Jingang Jiang Peng Wu Le Xu . Toward the microporous zeolite family with tunable large-medium cage and pore opening. Chinese Journal of Structural Chemistry, 2024, 43(9): 100336-100336. doi: 10.1016/j.cjsc.2024.100336

    9. [9]

      Xianping DuYing HuangChen ChenZhenhe FengMeng Zong . Encapsulating Si particles in multiple carbon shells with pore-rich for constructing free-standing anodes of lithium storage. Chinese Chemical Letters, 2024, 35(12): 109990-. doi: 10.1016/j.cclet.2024.109990

    10. [10]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    11. [11]

      Fahui XiangLu LiZhen YuanWuji WeiXiaoqing ZhengShimin ChenYisi YangLiangji ChenZizhu YaoJianwei FuZhangjing ZhangShengchang Xiang . Enhanced C2H2/CO2 separation in tetranuclear Cu(Ⅱ) cluster-based metal-organic frameworks by adjusting divider length of pore space partition. Chinese Chemical Letters, 2025, 36(3): 109672-. doi: 10.1016/j.cclet.2024.109672

    12. [12]

      Teng-Yu HuangJunliang SunDe-Xian WangQi-Qiang Wang . Recent progress in chiral zeolites: Structure, synthesis, characterization and applications. Chinese Chemical Letters, 2024, 35(12): 109758-. doi: 10.1016/j.cclet.2024.109758

    13. [13]

      Shudi YuJie LiJiongting YinWanyu LiangYangping ZhangTianpeng LiuMengyun HuYong WangZhengying WuYuefan ZhangYukou Du . Built-in electric field and core-shell structure of the reconstructed sulfide heterojunction accelerated water splitting. Chinese Chemical Letters, 2024, 35(12): 110068-. doi: 10.1016/j.cclet.2024.110068

    14. [14]

      Cunjun LiWencong LiuXianlei ChenLiang LiShenyu LanMingshan Zhu . Adsorption and activation of peroxymonosulfate on BiOCl for carbamazepine degradation: The role of piezoelectric effect. Chinese Chemical Letters, 2024, 35(10): 109652-. doi: 10.1016/j.cclet.2024.109652

    15. [15]

      Zhaodong WANGIn situ synthesis, crystal structure, and magnetic characterization of a trinuclear copper complex based on a multi-substituted imidazo[1,5-a]pyrazine scaffold. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 597-604. doi: 10.11862/CJIC.20240268

    16. [16]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    17. [17]

      Jiaxuan WangTonghe LiuBingxiang WangZiwei LiYuzhong NiuHou ChenYing Zhang . Synthesis of polyhydroxyl-capped PAMAM dendrimer/silica composites for the adsorption of aqueous Hg(II) and Ag(I). Chinese Chemical Letters, 2024, 35(12): 109900-. doi: 10.1016/j.cclet.2024.109900

    18. [18]

      Fengxing LiangYongzheng ZhuNannan WangMeiping ZhuHuibing HeYanqiu ZhuPeikang ShenJinliang Zhu . Recent advances in copper-based materials for robust lithium polysulfides adsorption and catalytic conversion. Chinese Chemical Letters, 2024, 35(11): 109461-. doi: 10.1016/j.cclet.2023.109461

    19. [19]

      Congyan LiuXueyao ZhouFei YeBin JiangBo Liu . Confined electric field in nano-sized channels of ionic porous framework towards unique adsorption selectivity. Chinese Chemical Letters, 2025, 36(2): 109969-. doi: 10.1016/j.cclet.2024.109969

    20. [20]

      Muhammad Riaz Rakesh Kumar Gupta Di Sun Mohammad Azam Ping Cui . Selective adsorption of organic dyes and iodine by a two-dimensional cobalt(II) metal-organic framework. Chinese Journal of Structural Chemistry, 2024, 43(12): 100427-100427. doi: 10.1016/j.cjsc.2024.100427

Metrics
  • PDF Downloads(8)
  • Abstract views(752)
  • HTML views(76)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return