Citation: YU Dao-ke, FU Mei-li, YUAN Ya-hui, SONG Yi-bing, CHEN Jia-yang, FANG Yi-wen. One-step synthesis of hierarchical-structured ZSM-5 zeolite[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(11): 1363-1369. shu

One-step synthesis of hierarchical-structured ZSM-5 zeolite

  • Corresponding author: FANG Yi-wen, ywfang@stu.edu.cn
  • Received Date: 15 April 2016
    Revised Date: 9 July 2016

    Fund Project: the Subject and Specialty Construction Special Fund of Guangdong Provincial Higher Education Institution 2013KJCX0081the National Fund Cultivation Project NFC 15001the Subject and Specialty Construction Special Fund of Guangdong Provincial Higher Education Institution 2012CXZD0024the Science and Technology Plan Project of Guangdong Province 2013B030600001

Figures(8)

  • Generally, the process for synthesis of hierarchical-structured ZSM-5 zeolite is complex. Here, the polygonal three-dimensional ZSM-5 zeolite with hierarchical structure was hydrothermally synthesized by one-step synthesis method with dual templates. The effects of crystallization conditions and synthesis gel compositions, including crystallization temperature, crystallization time, Si/Al molar ratio, on the products were investigated for optimizing synthesis conditions. The X-ray diffraction (XRD), N2 adsorption-desorption experiment, Pyridine adsorption FT-IR (Py-FTIR), scanning electron microscopy (SEM) and transmission electron microscope (TEM) were used to characterize the crystalline structure, pore structure, surface acidity and crystal morphology of products. It was shown that the hierarchical-structured ZSM-5 zeolite can be synthesized under the following conditions: crystallization temperature of 160-180℃, crystallization time of 24-96 h, the SiO2/Al2O3/Na2O/CTAB/TPABr/H2O ratio of 1/x/0.4/0.05/0.12/280, (x: 50-240). The sample crystallized at 160℃ for 48 h with a synthesis gel having a Si/Al molar ratio of 50 had uniform cylindrical crystal morphology, high crystallinity and ordered mesoporous structure with a pore diameter of 3.60 nm. It contains both strong Brønsted and Lewis acid sites at 300℃, which contribute to its catalytic properties.
  • 加载中
    1. [1]

      KOKOTAILO G T, LAWTON S L, OLSON D H, MEIER W M. Structure of synthetic zeolite ZSM-5[J]. Nature, 1978,272:437-438. doi: 10.1038/272437a0

    2. [2]

      CHOI M, NA K, KIM J, SAKAMOTO Y, TERASAKI O, RYOO R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature, 2009,461(7261):246-249. doi: 10.1038/nature08288

    3. [3]

      CORMA A, KUMAR D. Possibilities of mesoporous materials in catalysis[J]. Stud Surf Sci Catal, 1998,117:201-222. doi: 10.1016/S0167-2991(98)80994-4

    4. [4]

      BISCARDI J A, IGLESIA E. Structure and function of metal cations in light alkane reactions catalyzed by modified H-ZSM5[J]. Catal Today, 1996,31(3/4):207-231.  

    5. [5]

      ZHU Z, CHEN Q, XIE Z, YANG W, KONG D, LI C. Shape-selective disproportionation of ethylbenzene to para-diethylbenzene over ZSM-5 modified by chemical liquid deposition and MgO[J]. J Mol Catal A:Chem, 2006,248(1/2):152-158.  

    6. [6]

      DEGNAN T F, CHITNIS G K, SCHIPPER P H. History of ZSM-5 fluid catalytic cracking additive development at Mobil[J]. Microporous Mesoporous Mater, 2000,35-36:245-252. doi: 10.1016/S1387-1811(99)00225-5

    7. [7]

      FIROOZI M, BAGHALHA M, ASADI M. The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction[J]. Catal Commun, 2009,10(12):1582-1585. doi: 10.1016/j.catcom.2009.04.021

    8. [8]

      ILIAS S, KHARE R, MALEK A, BHAN A. A descriptor for the relative propagation of the aromatic-and olefin-based cycles in methanol-to-hydrocarbons conversion on H-ZSM-5[J]. J Catal, 2013,303:135-140. doi: 10.1016/j.jcat.2013.03.021

    9. [9]

      FANG Y, TANG J, HUANG X, SHEN W, SONG Y, SUN C. Aromatization of dimethyl ether over Zn/H-ZSM-5 catalyst[J]. Chin J Catal, 2010,31(3):264-266. doi: 10.1016/S1872-2067(09)60046-2

    10. [10]

      RAO R R, SRINIVAS N, KULKARNI S J, SUBRAHMANYAM M, RAGHAVAN K V. A new route for the synthesis of 3, 5-lutidine over modified ZSM-5 catalysts[J]. Appl Catal A:Gen, 1997,161(1/2):L37-L42.  

    11. [11]

      CORMA A, NAVARRO M T. From micro to mesoporous molecular sieves:Adapting composition and structure for catalysis[J]. Stud Surf Sci Catal, 2002,142:487-501. doi: 10.1016/S0167-2991(02)80065-9

    12. [12]

      CORMA A. State of the art and future challenges of zeolites as catalysts[J]. J Catal, 2003,216(1/2):298-312.

    13. [13]

      OGUNRONBI K E, AL-YASSIR N, AL-KHATTAF S. New insights into hierarchical metal-containing zeolites; synthesis and kinetic modelling of mesoporous gallium-containing ZSM-5 for propane aromatization[J]. J Mol Catal A:Chem, 2015,406:1-18. doi: 10.1016/j.molcata.2015.05.005

    14. [14]

      ROWNAGHI A A, REZAEI F, HEDLUND J. Uniform mesoporous ZSM-5 single crystals catalyst with high resistance to coke formation for methanol deoxygenation[J]. Microporous Mesoporous Mater, 2012,151:26-33. doi: 10.1016/j.micromeso.2011.11.020

    15. [15]

      CAI C, WANG H, HAN J. Synthesis and characterization of ionic liquid-functionalized alumino-silicate MCM-41 hybrid mesoporous materials[J]. Appl Surf Sci, 2011,257(23):9802-9808. doi: 10.1016/j.apsusc.2011.06.025

    16. [16]

      YASMIN T, MVLLER K. Structural characterization of alkyl bonded MCM-41 silica materials prepared by supercritical fluid approach[J]. Microporous Mesoporous Mater, 2015,208:83-92. doi: 10.1016/j.micromeso.2015.01.035

    17. [17]

      LEI J, FAN J, YU C, ZHANG L, JIANG S, TU B, ZHAO D. Immobilization of enzymes in mesoporous materials:Controlling the entrance to nanospace[J]. Microporous Mesoporous Mater, 2004,73(3):121-128. doi: 10.1016/j.micromeso.2004.05.004

    18. [18]

      KARLSSON A, STÖCKER M, SCHMIDT R. Composites of micro-and mesoporous materials:Simultaneous syntheses of MFI/MCM-41 like phases by a mixed template approach[J]. Microporous Mesoporous Mater, 1999,27(2/3):181-192.

    19. [19]

      XIA Y, MOKAYA R. On the synthesis and characterization of ZSM-5/MCM-48 aluminosilicate composite materials[J]. J Mater Chem, 2004,14(5):863-870. doi: 10.1039/b313389c

    20. [20]

      CHEN H, XI H, CAI X, QIAN Y. Experimental and molecular simulation studies of a ZSM-5-MCM-41 micro-mesoporous molecular sieve[J]. Microporous Mesoporous Mater, 2009,118(1/3):396-402.

    21. [21]

      OGURA M, SHINOMIYA S Y, TATENO J, NARA Y, KIKUCHI E, MATSUKATA M. Formation of uniform mesopores in ZSM-5 zeolite through treatment in alkaline solution[J]. Chem Lett, 2000,29(8):882-883. doi: 10.1246/cl.2000.882

    22. [22]

      GROEN J C, PÉREZ-RAMÍREZ J, PEFFER L A. Formation of uniform mesopores in ZSM-5 zeolite upon alkaline post-treatment[J]. Chem Lett, 2002,31(1):94-95. doi: 10.1246/cl.2002.94

    23. [23]

      NA K, CHOI M, RYOO R. Recent advances in the synthesis of hierarchically nanoporous zeolites[J]. Microporous Mesoporous Mater, 2013,166:3-19. doi: 10.1016/j.micromeso.2012.03.054

    24. [24]

      JACOBSEN C J, MADSEN C, JANSSENS T V, JAKOBSEN H J, SKIBSTED J. Zeolites by confined space synthesis-characterization of the acid sites in nanosized ZSM-5 by ammonia desorption and27 Al/29Si-MAS NMR spectroscopy[J]. Microporous Mesoporous Mater, 2000,39(1):393-401.  

    25. [25]

      SCHMIDT I, BOISEN A, GUSTAVSSON E, STÅHL K, PEHRSON S, DAHL S, CARLSSON A, JACOBSEN C J. Carbon nanotube templated growth of mesoporous zeolite single crystals[J]. Chem Mater, 2001,13(12):4416-4418. doi: 10.1021/cm011206h

    26. [26]

      JANSSEN A, SCHMIDT I, JACOBSEN C, KOSTER A, DE JONG K. Exploratory study of mesopore templating with carbon during zeolite synthesis[J]. Microporous Mesoporous Mater, 2003,65(1):59-75. doi: 10.1016/j.micromeso.2003.07.003

    27. [27]

      ZHAO J, HUA Z, LIU Z, LI Y, GUO L, BU W, CUI X, RUAN M, CHEN H, SHI J. Direct fabrication of mesoporous zeolite with a hollow capsular structure[J]. Chem Commun, 2009(48):7578-7580. doi: 10.1039/b913920f

    28. [28]

      CHEN G, JIANG L, WANG L, ZHANG J. Synthesis of mesoporous ZSM-5 by one-pot method in the presence of polyethylene glycol[J]. Microporous Mesoporous Mater, 2010,134(1/3):189-194.  

    29. [29]

      ZHANG H, CHU L, XIAO Q, ZHU L, YANG C, MENG X, XIAO F. One-pot synthesis of Fe-Beta zeolite by an organotemplate-free and seed-directed route[J]. J Mater Chem A, 2013,1(10)3254. doi: 10.1039/c3ta01238g

    30. [30]

      SING K, EVERETT D, HAUL R, MOSCOU L, PIEROTTI R, J. ROUQUÉ. SIEMIENIEWSKA T. Reporting physisorption data for gas/solid systems[R]. Pure Appl Chem, 1985, 57(4):603.

    31. [31]

      SING K S. Reporting physisorption data for gas/solid systems with special reference to the determination of surface area and porosity (Recommendations 1984)[R]. Pure Appl Chem, 1985, 57(4):603-619.

  • 加载中
    1. [1]

      Liping GUO . Synthesis and crystal structure characterization of yttrium imido complex: The reactivity of 2-substituted-1-amino-o-carborane with yttrium dialkyl complex. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1409-1415. doi: 10.11862/CJIC.20250065

    2. [2]

      Huimin Luan Qinming Wu Jianping Wu Xiangju Meng Feng-Shou Xiao . Templates for the synthesis of zeolites. Chinese Journal of Structural Chemistry, 2024, 43(4): 100252-100252. doi: 10.1016/j.cjsc.2024.100252

    3. [3]

      Lanfang WangJiangnan LvYujia LiYanqing HaoWenjiao LiuHui ZhangXiaohong Xu . One-step synthesis of nanowoven ball-like NiS-WS2 for high-efficiency hydrogen evolution. Chinese Chemical Letters, 2025, 36(1): 109597-. doi: 10.1016/j.cclet.2024.109597

    4. [4]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    5. [5]

      Gangsheng LiXiang YuanFu LiuZhihua LiuXujie WangYuanyuan LiuYanmin ChenTingting WangYanan YangPeicheng Zhang . Three-step synthesis of flavanostilbenes with a 2-cyclohepten-1-one core by Cu-mediated [5 + 2] cycloaddition/decarboxylation cascade. Chinese Chemical Letters, 2025, 36(2): 109880-. doi: 10.1016/j.cclet.2024.109880

    6. [6]

      Tao BanXi-Yang YuHai-Kuo TianZheng-Qing HuangChun-Ran Chang . One-step conversion of methane and formaldehyde to ethanol over SA-FLP dual-active-site catalysts: A DFT study. Chinese Chemical Letters, 2024, 35(4): 108549-. doi: 10.1016/j.cclet.2023.108549

    7. [7]

      Xinyu You Xin Zhang Shican Jiang Yiru Ye Lin Gu Hexun Zhou Pandong Ma Jamal Ftouni Abhishek Dutta Chowdhury . Efficacy of Ca/ZSM-5 zeolites derived from precipitated calcium carbonate in the methanol-to-olefin process. Chinese Journal of Structural Chemistry, 2024, 43(4): 100265-100265. doi: 10.1016/j.cjsc.2024.100265

    8. [8]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    9. [9]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    10. [10]

      Rui TIANDuo LIYuan RENJiamin CHAIXuehua SUNHaoyu LIYuecheng ZHANG . Dual-ligand-modified copper nanoclusters: Synthesis and application in ornidazole detection. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1245-1255. doi: 10.11862/CJIC.20240389

    11. [11]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    12. [12]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    13. [13]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    14. [14]

      Wenxuan YangLong ShangXiaomeng LiuSihan ZhangHaixia LiZhenhua YanJun Chen . Ultrafast synthesis of nanocrystalline spinel oxides by Joule-heating method. Chinese Chemical Letters, 2024, 35(11): 109501-. doi: 10.1016/j.cclet.2024.109501

    15. [15]

      Hong-Tao JiYu-Han LuYan-Ting LiuYu-Lin HuangJiang-Feng TianFeng LiuYan-Yan ZengHai-Yan YangYong-Hong ZhangWei-Min He . Nd@C3N4-photoredox/chlorine dual catalyzed synthesis and evaluation of antitumor activities of 4-alkylated sulfonyl ketimines. Chinese Chemical Letters, 2025, 36(2): 110568-. doi: 10.1016/j.cclet.2024.110568

    16. [16]

      Chao LIUJiang WUZhaolei JIN . Synthesis, crystal structures, and antibacterial activities of two zinc(Ⅱ) complexes bearing 5-phenyl-1H-pyrazole group. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1986-1994. doi: 10.11862/CJIC.20240153

    17. [17]

      Ying LiLong-Jie WangYong-Kang ZhouJun LiangBin XiaoJi-Shen Zheng . An improved installation of 2-hydroxy-4-methoxybenzyl (iHmb) method for chemical protein synthesis. Chinese Chemical Letters, 2024, 35(5): 109033-. doi: 10.1016/j.cclet.2023.109033

    18. [18]

      Yihong LiZhong QiuLei HuangShenghui ShenPing LiuHaomiao ZhangFeng CaoXinping HeJun ZhangYang XiaXinqi LiangChen WangWangjun WanYongqi ZhangMinghua ChenWenkui ZhangHui HuangYongping GanXinhui Xia . Plasma enhanced reduction method for synthesis of reduced graphene oxide fiber/Si anode with improved performance. Chinese Chemical Letters, 2024, 35(11): 109510-. doi: 10.1016/j.cclet.2024.109510

    19. [19]

      Hang Wang Qi Wang Chuan-De Wu . Continuous synthesis of ammonia. Chinese Journal of Structural Chemistry, 2025, 44(3): 100437-100437. doi: 10.1016/j.cjsc.2024.100437

    20. [20]

      Min FuRuihan WangWenqiang LiuSen ZhouChunhong ZhongYaohao LiPan HeXin LiShiying ShangZhongping Tan . Improved one-pot protein synthesis enabled by a more precise assessment of peptide arylthioester reactivity. Chinese Chemical Letters, 2025, 36(7): 110542-. doi: 10.1016/j.cclet.2024.110542

Metrics
  • PDF Downloads(2)
  • Abstract views(521)
  • HTML views(48)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return