Citation: MAO Jing-wen, XU Bin, HU Yi-kang, ZHANG Chang-yuan, MENG Hui-min. Effect of Ce metal modification on the hydrothermal stability of Cu-SAPO-34 catalyst[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(10): 1208-1215. shu

Effect of Ce metal modification on the hydrothermal stability of Cu-SAPO-34 catalyst

  • Corresponding author: XU Bin, xu64327@163.com
  • Received Date: 7 September 2020
    Revised Date: 21 September 2020

    Fund Project: National Key Research and Development Program "Development of New Energy-saving and Environmentally Friendly Agricultural Engines 2106YFD0700700The project was supported by National Key Research and Development Program "Development of New Energy-saving and Environmentally Friendly Agricultural Engines (2106YFD0700700)

Figures(7)

  • A series of copper-cerium composite oxide molecular sieve catalysts (Cu-Ce/SAPO-34) were prepared by impregnation method, and the effects of Ce loading on the hydrothermal stability of Cu/SAPO-34 catalyst were discussed. The reasons for the difference in activity and stability of different catalysts were analyzed by XRD, SEM, H2-TPR, XPS, and NH3-TPD. The present study showed that hydrothermal aging at 750 ℃ did not cause the chabazite (CHA) framework of Cu-Ce/SAPO-34 catalyst to collapse, but destroyed part of the pore structure and acid sites, and reduced the crystallinity of the catalyst surface. Hydrothermal aging promoted tensile distortion of the catalyst lattice, causing Cu2+ to migrate to the catalyst surface, and Cu2+ and Ce4+ clustered to form CuO and CeO2, which resulted in the reduction of the Cu active species and the decrease of the oxygen hole concentration of the catalyst. Therefore, the performance of Cu-Ce/SAPO-34 for the selective catalytic reduction of NOx by NH3 (NH3-SCR) decreased. Ce doping could increase the amount of Cu2+ and Cu+ active species on the surface of Cu/SAPO-34 catalyst, reduce Cu species clusters to form CuO, and improve the distribution of active Cu species on the catalyst surface. Increasing the loading of Ce could stabilize the structure of Cu-Ce/SAPO-34 catalyst and maintain the medium and weak acid sites, thereby improving its hydrothermal stability. The results indicated that the Cu/Ce mass ratio of 4:5 had the best hydrothermal stability among the series of Cu-Ce/SAPO-34 catalysts in this study.
  • 加载中
    1. [1]

      KWAK J H, TRAN D, BURTON S D, SZANYI J, LEE J H, PEDEN C H F. Effects of hydrothermal aging on NH3-SCR reaction over Cu/zeolites[J]. J Catal, 2012,287:203-209. doi: 10.1016/j.jcat.2011.12.025

    2. [2]

      SCHMIEG S J, OH S H, KIM C H, BROEN D B, LEE J H, PEDEN C H F, KIM D H. Thermal durability of Cu-CHA NH3-SCR catalysts for diesel NOx reduction[J]. Catal Today, 2012,184:252-161. doi: 10.1016/j.cattod.2011.10.034

    3. [3]

      KIM Y J, LEE J K, MIN K M, HONG S B, NAM I S, CHO B K. Hydrothermal stability of CuSSZ13 for reducing NOx by NH3[J]. J Catal, 2014,311:447-457. doi: 10.1016/j.jcat.2013.12.012

    4. [4]

      DOU B J, LV G, WANG C, HAO Q L, HUI K S. Cerium doped copper/ZSM-5 catalysts used for the selective catalytic reduction of nitrogen oxide with ammonia[J]. Chem Eng J, 2015,270:549-556. doi: 10.1016/j.cej.2015.02.004

    5. [5]

      LI X H, ZHAO Y N, ZHAO H W, LIU M K, MA Y H, YONG X, CHEN H, LI Y D. The Cu migration of Cu-SAPO-34 catalyst for ammonia selective catalytic reduction of NOx during high temperature hydrothermal aging treatment[J]. Catal Today, 2019,327:126-133. doi: 10.1016/j.cattod.2018.05.029

    6. [6]

      XIANG X, CAO Y, SUN L J, WU P F, CAO L, XU S T, TIAN P, LIU Z M. Improving the low-temperature hydrothermal stability of Cu-SAPO-34 by the addition of Ag for ammonia selective catalytic reduction of NOx[J]. Appl Catal A:Gen, 2018,551:79-87. doi: 10.1016/j.apcata.2017.12.001

    7. [7]

      WANG D, JANGJOU Y, LIU Y, SHARMA M K, LUO J Y, LI J H, KAMASAMUDRAM K, EPLING W S. A comparison of hydrothermal aging effects on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts[J]. Appl Catal B:Environ, 2015,165:438-445. doi: 10.1016/j.apcatb.2014.10.020

    8. [8]

      PETKOVICH N D, RUDISILL S G, VENSTROM L J, BOMAN D B, DAVIDSON J H, STEIN A. Control of heterogeneity in nanostructured Ce1-xZrxO2 binary oxides for enhanced thermal stability and water splitting activity[J]. J Phys Chem C, 2011,115(43):21022-21033. doi: 10.1021/jp2071315

    9. [9]

      BAIDYA T, GUPTA A, DESHPANDEY P A, MADRAS G, HEGDE M S. High oxygen storage capacity and high rates of CO oxidation and NO reduction catalytic properties of Ce1-xSnxO2 and Ce0.78Sn0.2Pd0.02O2-δ[J]. J Phys Chem C, 2009,113(10):4059-4068. doi: 10.1021/jp8060569

    10. [10]

      PANG L, FAN C, SHAO L N, SONG K P, YI J X, CAI X, WANG J, KANG M, LI T. The Ce doping Cu/ZSM-5 as a new superior catalyst to remove NO from diesel engine exhaust[J]. Chem Eng J, 2014,253:394-401. doi: 10.1016/j.cej.2014.05.090

    11. [11]

      CAO Y, ZOU S, LAN L, YANG Z Z, XU H D, LIN T, GONG M C, CHEN Y Q. Promotional effect of Ce on Cu-SAPO-34 monolith catalyst for selective catalytic reduction of NOx with ammonia[J]. J Mol Catal A:Chem, 2015,398:304-311. doi: 10.1016/j.molcata.2014.12.020

    12. [12]

      HU Yi-kang, XU Bin, CAO Zhi-kun, MAO Jing-wen. Effects of Cu loading and modification on the performance of Cu/SAPO-34 catalyst NH3-SCR[J]. Mod Chem Ind, 2020,40(5):122-127.  

    13. [13]

      QI G, YANG R T. Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe/ZSM-5 catalysts[J]. Appl Catal A:Gen, 2005,287:25-33. doi: 10.1016/j.apcata.2005.03.006

    14. [14]

      DOU B, LV G, WANG C, HAO Q L, HUI K S. Cerium doped copper/ZSM-5 catalysts used for the selective catalytic reduction of nitrogen oxide with ammonia[J]. Chem Eng J, 2015,270:549-556. doi: 10.1016/j.cej.2015.02.004

    15. [15]

      WANG L, LI W, QI G S, WEN D. Location and nature of Cu species in Cu/SAPO-34 for selective catalytic reduction of NO with NH3[J]. J Catal, 2012,289:21-29. doi: 10.1016/j.jcat.2012.01.012

    16. [16]

      SU Wen-kang. Study on the mechanism of Cu/CHA molecular sieve selective catalytic reduction of NOx in diesel vehicle Exhaust[D]. Beijing: Tsinghua University, 2016.

    17. [17]

      KWAK J H, TONKYN R, TRAN D, MEI D H, CHO S J, KOVARIK L, LEE J H, PEDEN C H F, SZANYI J. Size-dependent catalytic performance of CuO on γ-Al2O3:NO reduction versus NH3 oxidation[J]. ACS Catal, 2012,2(7):1432-1440. doi: 10.1021/cs3002463

    18. [18]

      WANG J, HUANG Y, YU T, ZHOU S C, SHEN M Q, LI W, WANG J Q. The migration of Cu species over Cu-SAPO-34 and its effect on NH3 oxidation at high temperature[J]. Catal Sci Technol, 2014,4(9):3004-3012. doi: 10.1039/C4CY00451E

    19. [19]

      YU C L, HUANG B C, DONG L F, CHEN F, LIU X Q. Effect of Pr/Ce addition on the catalytic performance and SO2 resistance of highly dispersed MnOx/SAPO-34 catalyst for NH3-SCR at low temperature[J]. Chem Eng J, 2017,316(Complete):1059-1068.  

    20. [20]

      WANG L, GAUDET J R, Li W, WANG D. Migration of Cu species in Cu/SAPO-34 during hydrothermal aging[J]. J Catal, 2013,306(1/2):68-77.  

    21. [21]

      ZHAO S, HUANG L M, JIANG B Q, CHENG M, ZHANG J W, HU Y J. Stability of Cu-Mn bimetal catalysts based on different zeolites for NOx removal from diesel engine exhaust[J]. Chin J Catal, 2018,39(4):800-809. doi: 10.1016/S1872-2067(18)63013-X

    22. [22]

      GAO F, WALTER E D, KOLLAR M, WANG Y L, SZANYI J, PEDEN C H F. Understanding ammonia selective catalytic reduction kinetics over Cu/SSZ-13 from motion of the Cu ions[J]. J Catal, 2014,319:1-14. doi: 10.1016/j.jcat.2014.08.010

    23. [23]

      VENNESTROM P N R, KATERINPOULOU A, TIRUVALAM R R, KUSTOV A, MOSES P G, CONCEPCION P, CORMA A. Migration of Cu ions in SAPO-34 and its impact on selective catalytic reduction of NOx with NH3[J]. ACS Catal, 2013,3(9):2158-2161. doi: 10.1021/cs400499p

    24. [24]

      LIU J, LI X Y, ZHAO Q D, ZHANG D K, NDOKOYE P. The selective catalytic reduction of NO with propene over Cu-supported Ti-Ce mixed oxide catalysts:Promotional effect of ceria[J]. J Mol Catal A:Chem, 2013,378:115-123. doi: 10.1016/j.molcata.2013.06.005

    25. [25]

      DUTTA P, PAL S, SEEHRA M S, SHI Y, EYRING E M, ERNST R D. Concentration of Ce3+ and oxygen vacancies in cerium oxide nanoparticles[J]. Chem Mater, 2006,18(21):5144-5146. doi: 10.1021/cm061580n

    26. [26]

      VAN KOOTEN W E J, LIANG B, KRIJNSEN H C, OUDSHOORN O L, CALIS H P A, VAN DEN BLEEK C M. Ce-ZSM-5 catalysts for the selective catalytic reduction of NOx in stationary diesel exhaust gas[J]. Appl Catal B:Environ, 1999,21(3):203-213. doi: 10.1016/S0926-3373(99)00023-5

    27. [27]

      WANG J, YU T, WANG X Q, QI G S, XUE J J, SHEN M Q, LI W. The influence of silicon on the catalytic properties of Cu/SAPO-34 for NOx reduction by ammonia-SCR[J]. Appl Catal B:Environ, 2012,127:137-147. doi: 10.1016/j.apcatb.2012.08.016

    28. [28]

      CAO Y, LAN L, FENG X, YANG Z Z, ZOU S, XU H D, LI Z Q, GONG M C, CHEN Y Q. Cerium promotion on the hydrocarbon resistance of a Cu-SAPO-34 NH3-SCR monolith catalyst[J]. Catal Sci Technol, 2015,5(9):4511-4521. doi: 10.1039/C5CY00704F

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    4. [4]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    5. [5]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    6. [6]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    7. [7]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    8. [8]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    9. [9]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    10. [10]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    11. [11]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    12. [12]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    13. [13]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    14. [14]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    15. [15]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    16. [16]

      Yanan Liu Yufei He Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081

    17. [17]

      Xue Dong Xiaofu Sun Shuaiqiang Jia Shitao Han Dawei Zhou Ting Yao Min Wang Minghui Fang Haihong Wu Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012

    18. [18]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    19. [19]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    20. [20]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

Metrics
  • PDF Downloads(9)
  • Abstract views(1342)
  • HTML views(457)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return