Effect of Ce metal modification on the hydrothermal stability of Cu-SAPO-34 catalyst
- Corresponding author: XU Bin, xu64327@163.com
Citation:
MAO Jing-wen, XU Bin, HU Yi-kang, ZHANG Chang-yuan, MENG Hui-min. Effect of Ce metal modification on the hydrothermal stability of Cu-SAPO-34 catalyst[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(10): 1208-1215.
KWAK J H, TRAN D, BURTON S D, SZANYI J, LEE J H, PEDEN C H F. Effects of hydrothermal aging on NH3-SCR reaction over Cu/zeolites[J]. J Catal, 2012,287:203-209. doi: 10.1016/j.jcat.2011.12.025
SCHMIEG S J, OH S H, KIM C H, BROEN D B, LEE J H, PEDEN C H F, KIM D H. Thermal durability of Cu-CHA NH3-SCR catalysts for diesel NOx reduction[J]. Catal Today, 2012,184:252-161. doi: 10.1016/j.cattod.2011.10.034
KIM Y J, LEE J K, MIN K M, HONG S B, NAM I S, CHO B K. Hydrothermal stability of CuSSZ13 for reducing NOx by NH3[J]. J Catal, 2014,311:447-457. doi: 10.1016/j.jcat.2013.12.012
DOU B J, LV G, WANG C, HAO Q L, HUI K S. Cerium doped copper/ZSM-5 catalysts used for the selective catalytic reduction of nitrogen oxide with ammonia[J]. Chem Eng J, 2015,270:549-556. doi: 10.1016/j.cej.2015.02.004
LI X H, ZHAO Y N, ZHAO H W, LIU M K, MA Y H, YONG X, CHEN H, LI Y D. The Cu migration of Cu-SAPO-34 catalyst for ammonia selective catalytic reduction of NOx during high temperature hydrothermal aging treatment[J]. Catal Today, 2019,327:126-133. doi: 10.1016/j.cattod.2018.05.029
XIANG X, CAO Y, SUN L J, WU P F, CAO L, XU S T, TIAN P, LIU Z M. Improving the low-temperature hydrothermal stability of Cu-SAPO-34 by the addition of Ag for ammonia selective catalytic reduction of NOx[J]. Appl Catal A:Gen, 2018,551:79-87. doi: 10.1016/j.apcata.2017.12.001
WANG D, JANGJOU Y, LIU Y, SHARMA M K, LUO J Y, LI J H, KAMASAMUDRAM K, EPLING W S. A comparison of hydrothermal aging effects on NH3-SCR of NOx over Cu-SSZ-13 and Cu-SAPO-34 catalysts[J]. Appl Catal B:Environ, 2015,165:438-445. doi: 10.1016/j.apcatb.2014.10.020
PETKOVICH N D, RUDISILL S G, VENSTROM L J, BOMAN D B, DAVIDSON J H, STEIN A. Control of heterogeneity in nanostructured Ce1-xZrxO2 binary oxides for enhanced thermal stability and water splitting activity[J]. J Phys Chem C, 2011,115(43):21022-21033. doi: 10.1021/jp2071315
BAIDYA T, GUPTA A, DESHPANDEY P A, MADRAS G, HEGDE M S. High oxygen storage capacity and high rates of CO oxidation and NO reduction catalytic properties of Ce1-xSnxO2 and Ce0.78Sn0.2Pd0.02O2-δ[J]. J Phys Chem C, 2009,113(10):4059-4068. doi: 10.1021/jp8060569
PANG L, FAN C, SHAO L N, SONG K P, YI J X, CAI X, WANG J, KANG M, LI T. The Ce doping Cu/ZSM-5 as a new superior catalyst to remove NO from diesel engine exhaust[J]. Chem Eng J, 2014,253:394-401. doi: 10.1016/j.cej.2014.05.090
CAO Y, ZOU S, LAN L, YANG Z Z, XU H D, LIN T, GONG M C, CHEN Y Q. Promotional effect of Ce on Cu-SAPO-34 monolith catalyst for selective catalytic reduction of NOx with ammonia[J]. J Mol Catal A:Chem, 2015,398:304-311. doi: 10.1016/j.molcata.2014.12.020
HU Yi-kang, XU Bin, CAO Zhi-kun, MAO Jing-wen. Effects of Cu loading and modification on the performance of Cu/SAPO-34 catalyst NH3-SCR[J]. Mod Chem Ind, 2020,40(5):122-127.
QI G, YANG R T. Selective catalytic oxidation (SCO) of ammonia to nitrogen over Fe/ZSM-5 catalysts[J]. Appl Catal A:Gen, 2005,287:25-33. doi: 10.1016/j.apcata.2005.03.006
DOU B, LV G, WANG C, HAO Q L, HUI K S. Cerium doped copper/ZSM-5 catalysts used for the selective catalytic reduction of nitrogen oxide with ammonia[J]. Chem Eng J, 2015,270:549-556. doi: 10.1016/j.cej.2015.02.004
WANG L, LI W, QI G S, WEN D. Location and nature of Cu species in Cu/SAPO-34 for selective catalytic reduction of NO with NH3[J]. J Catal, 2012,289:21-29. doi: 10.1016/j.jcat.2012.01.012
SU Wen-kang. Study on the mechanism of Cu/CHA molecular sieve selective catalytic reduction of NOx in diesel vehicle Exhaust[D]. Beijing: Tsinghua University, 2016.
KWAK J H, TONKYN R, TRAN D, MEI D H, CHO S J, KOVARIK L, LEE J H, PEDEN C H F, SZANYI J. Size-dependent catalytic performance of CuO on γ-Al2O3:NO reduction versus NH3 oxidation[J]. ACS Catal, 2012,2(7):1432-1440. doi: 10.1021/cs3002463
WANG J, HUANG Y, YU T, ZHOU S C, SHEN M Q, LI W, WANG J Q. The migration of Cu species over Cu-SAPO-34 and its effect on NH3 oxidation at high temperature[J]. Catal Sci Technol, 2014,4(9):3004-3012. doi: 10.1039/C4CY00451E
YU C L, HUANG B C, DONG L F, CHEN F, LIU X Q. Effect of Pr/Ce addition on the catalytic performance and SO2 resistance of highly dispersed MnOx/SAPO-34 catalyst for NH3-SCR at low temperature[J]. Chem Eng J, 2017,316(Complete):1059-1068.
WANG L, GAUDET J R, Li W, WANG D. Migration of Cu species in Cu/SAPO-34 during hydrothermal aging[J]. J Catal, 2013,306(1/2):68-77.
ZHAO S, HUANG L M, JIANG B Q, CHENG M, ZHANG J W, HU Y J. Stability of Cu-Mn bimetal catalysts based on different zeolites for NOx removal from diesel engine exhaust[J]. Chin J Catal, 2018,39(4):800-809. doi: 10.1016/S1872-2067(18)63013-X
GAO F, WALTER E D, KOLLAR M, WANG Y L, SZANYI J, PEDEN C H F. Understanding ammonia selective catalytic reduction kinetics over Cu/SSZ-13 from motion of the Cu ions[J]. J Catal, 2014,319:1-14. doi: 10.1016/j.jcat.2014.08.010
VENNESTROM P N R, KATERINPOULOU A, TIRUVALAM R R, KUSTOV A, MOSES P G, CONCEPCION P, CORMA A. Migration of Cu ions in SAPO-34 and its impact on selective catalytic reduction of NOx with NH3[J]. ACS Catal, 2013,3(9):2158-2161. doi: 10.1021/cs400499p
LIU J, LI X Y, ZHAO Q D, ZHANG D K, NDOKOYE P. The selective catalytic reduction of NO with propene over Cu-supported Ti-Ce mixed oxide catalysts:Promotional effect of ceria[J]. J Mol Catal A:Chem, 2013,378:115-123. doi: 10.1016/j.molcata.2013.06.005
DUTTA P, PAL S, SEEHRA M S, SHI Y, EYRING E M, ERNST R D. Concentration of Ce3+ and oxygen vacancies in cerium oxide nanoparticles[J]. Chem Mater, 2006,18(21):5144-5146. doi: 10.1021/cm061580n
VAN KOOTEN W E J, LIANG B, KRIJNSEN H C, OUDSHOORN O L, CALIS H P A, VAN DEN BLEEK C M. Ce-ZSM-5 catalysts for the selective catalytic reduction of NOx in stationary diesel exhaust gas[J]. Appl Catal B:Environ, 1999,21(3):203-213. doi: 10.1016/S0926-3373(99)00023-5
WANG J, YU T, WANG X Q, QI G S, XUE J J, SHEN M Q, LI W. The influence of silicon on the catalytic properties of Cu/SAPO-34 for NOx reduction by ammonia-SCR[J]. Appl Catal B:Environ, 2012,127:137-147. doi: 10.1016/j.apcatb.2012.08.016
CAO Y, LAN L, FENG X, YANG Z Z, ZOU S, XU H D, LI Z Q, GONG M C, CHEN Y Q. Cerium promotion on the hydrocarbon resistance of a Cu-SAPO-34 NH3-SCR monolith catalyst[J]. Catal Sci Technol, 2015,5(9):4511-4521. doi: 10.1039/C5CY00704F
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
Bing WEI , Jianfan ZHANG , Zhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201
Pei Li , Yuenan Zheng , Zhankai Liu , An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081
Fangxuan Liu , Ziyan Liu , Guowei Zhou , Tingting Gao , Wenyu Liu , Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071
Kun WANG , Wenrui LIU , Peng JIANG , Yuhang SONG , Lihua CHEN , Zhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037
Yulian Hu , Xin Zhou , Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088
Yi YANG , Shuang WANG , Wendan WANG , Limiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Zelong LIANG , Shijia QIN , Pengfei GUO , Hang XU , Bin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409
Wenlong LI , Xinyu JIA , Jie LING , Mengdan MA , Anning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421
Xuejie Wang , Guoqing Cui , Congkai Wang , Yang Yang , Guiyuan Jiang , Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044
Hailang JIA , Hongcheng LI , Pengcheng JI , Yang TENG , Mingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402
Yanan Liu , Yufei He , Dianqing Li . Preparation of Highly Dispersed LDHs-based Catalysts and Testing of Nitro Compound Reduction Performance: A Comprehensive Chemical Experiment for Research Transformation. University Chemistry, 2024, 39(8): 306-313. doi: 10.3866/PKU.DXHX202401081
Xue Dong , Xiaofu Sun , Shuaiqiang Jia , Shitao Han , Dawei Zhou , Ting Yao , Min Wang , Minghui Fang , Haihong Wu , Buxing Han . 碳修饰的铜催化剂实现安培级电流电化学还原CO2制C2+产物. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-. doi: 10.3866/PKU.WHXB202404012
Juntao Yan , Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024
Yuanyin Cui , Jinfeng Zhang , Hailiang Chu , Lixian Sun , Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
(a): fresh catalysts; (b): after 750 ℃ hydrothermal aging
a: 4%Cu/SAPO-34; b: 4%Cu/SAPO-34-750 ℃; c: Cu:Ce(4:1)/SAPO-34-750 ℃; d: Cu:Ce(4:3)/SAPO-34-750 ℃; e: Cu:Ce(4:5)/SAPO-34-750 ℃
a: 4%Cu/SAPO-34; b: 4%Cu/SAPO-34-750 ℃; c: Cu:Ce(4:1)/SAPO-34-750 ℃; d: Cu:Ce(4:3)/SAPO-34-750 ℃; e: Cu:Ce(4:5)/SAPO-34-750 ℃
a: 4%Cu/SAPO-34; b: Cu:Ce(4:5)/SAPO-34
a: Cu:Ce(4:5)/SAPO-34-750 ℃; b: Cu:Ce(4:5)/SAPO-34
a: 4%Cu/SAPO-34; b: 4%Cu/SAPO-34-750 ℃; c: Cu:Ce(4:1)/SAPO-34-750 ℃; d: Cu:Ce(4:3)/SAPO-34-750 ℃; e: Cu:Ce(4:5)/SAPO-34-750 ℃