Citation: HUANG Xue-qin, XIAO Qiang, ZHONG Yi-jun, ZHU Wei-dong. Wet ball-milling method to prepare nanocrystalline Li4SiO4 materials for CO2 capture at high temperatures[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(9): 1119-1124. shu

Wet ball-milling method to prepare nanocrystalline Li4SiO4 materials for CO2 capture at high temperatures

  • Corresponding author: XIAO Qiang, xiaoq@zjnu.cn
  • Received Date: 16 March 2016
    Revised Date: 24 May 2016

    Fund Project: the National Natural Science Foundation of China 21471131the National Natural Science Foundation of China 21303166

Figures(8)

  • A wet ball-milling method followed by calcination was adopted to prepare nanocrystalline Li4SiO4 materials by using different silicon and lithium sources. X-ray diffraction (XRD), scanning electron microscope (SEM) and transmission electron microscope (TEM) were applied to characterize the structure and morphology of the as-prepared Li4SiO4 materials. CO2 uptakes and recycle stability of the prepared Li4SiO4 materials were investigated on a thermogravity (TG) analyzer. Absorption equilibrium of 27.9% was achieved within 10 min at 550℃ and CO2 partial pressure of 2.5×104 Pa. The prepared nanocrystalline Li4SiO4 material kept the original absorption properties after 5 capture-regeneration cycles, indicating the good cycle stability. A mixture of 25% CO2-25% N2-50% He was introduced through the Li4SiO4 absorption bed, showing that CO2 can be efficiently captured at 550℃. The adsorption capacity showed no significant decrease in the presence of 10% humidity.
  • 加载中
    1. [1]

      《United Nations Framework Convention on Climate Change》 Kyoto Protocol[Z]. UN: Kyoto, Japan, 1998.

    2. [2]

      CHEN Chang-hong, BAO Xian-hua. Global energy consumption and CO2 emission[J]. Shanghai Environ Sci, 1999,18(2):62-64.

    3. [3]

      LI H, HELENE B, DE C. Approaching sustainable H2 production: Sorption enhanced steam reforming of ethanol[J]. J Phy Chem A, 2010,114(11):3834-3844. doi: 10.1021/jp906146y 

    4. [4]

      ZHANG Yun-zhuo, YU Zi-ying, ZHANG Fu-ming, XIAO Qiang, ZHONG Yi-jun, ZHU Wei-dong. Li2ZrO3 nanoparticles as absorbent for in-situ removal of CO2 in water-gas shift reaction to enhance H2 production[J]. Chin J Catal, 2012,33(9):1572-1577.

    5. [5]

      LI H, PAARA J M S, BLEKKAN E A, DE C. Towards efficient hydrogen production from glycerol by sorption enhanced steam reforming[J]. Energy Environ Sci, 2010,3(8):1046-1056. doi: 10.1039/b922355j

    6. [6]

      GAO Feng, LI Cun-mei, WANG Yuan, SUN Guo-hua, LI Kai-xi. Preparation of resin-base spherical activated carbon and study on adsorption properties towards CO2[J]. J Fuel Chem Technol, 2014,42(1):116-120.  

    7. [7]

      HU J X, SHANG H, WANG J G, LUO L, XIAO Q, ZHONG Y J, ZHU W D. Highly enhanced selectivity and easy regeneration for the separation of CO2 over N2 on melamine-based microporous organic polymers[J]. Ind Eng Chem Res, 2014,53(29):11828-11837. doi: 10.1021/ie501736t

    8. [8]

      ZHAO J, SIMEON F, WANG Y, LUO G, HATTON T A. Polyethylenimine-impregnated siliceous mesocellular foam particles as high capacity CO2 adsorbents[J]. RSC Adv, 2012,2(16):6509-6519. doi: 10.1039/c2ra20149f

    9. [9]

      LI Yong, LI Lei, WEN Xia, WANG Feng, ZHAO Ning, XIAO Fu-kui, WEI Wei, SUN Yu-han. Synthesis of amine modified silica for the capture of carbon dioxide by a twice grafting method[J]. J Fuel Chem Technol, 2013,41(9):1122-1128.  

    10. [10]

      YANG Gang-sheng, ZENG Gan-ning, ZHAO Qiang, CHEN Xu, CHEN Sheng-ji, AI Ning. Preparation of silica gel supported amino acid ionic liquids and their performance capacity towards carbon dioxide[J]. J Fuel Chem Technol, 2016,44(1):106-112.

    11. [11]

      LI J R, SCULLEY J, ZHOU H C. Metal-organic frameworks for separations[J]. Chem Rev, 2011,112(2):869-932.  

    12. [12]

      ZUO Cheng-sheng, ZHOU Si-yu, SUN Cheng-zhi, WANG Xing-zhi, LIU Dao-sheng, XU Hui-min, PIAO Rong-qi, GUI Jian-zhou, LIU Dan. Preparation and application of magnesium-based CO2 sorbent for temperature swing absorption I. Na/Mg mol ratio[J]. J Fuel Chem Technol, 2014,42(7):884-889.  

    13. [13]

      FLORIN N H, HAARRIS A T. Reactivity of CaO derived from nano-sized CaCO3 particles through multiple CO2capture-and-release cycles[J]. Chem Eng Sci, 2009,64(2):187-191. doi: 10.1016/j.ces.2008.10.021

    14. [14]

      XIAO Q, LIU Y F, ZHONG Y J, ZHU W D. A citrate sol-gel method to synthesize Li2ZrO3 nanocrystals with improved CO2 capture properties[J]. J Mater Chem, 2011,21(11):3838-3842. doi: 10.1039/c0jm03243c

    15. [15]

      XIAO Q, TANG X D, LIU Y F, ZHONG Y J, ZHU W D. Comparison study on strategies to prepare nanocrystalline Li2ZrO3-based absorbents for CO2 capture at high temperatures[J]. Front Chem Sci Eng, 2013,7(3):297-302. doi: 10.1007/s11705-013-1346-1

    16. [16]

      XIAO Q, TANG X D, ZHONG Y J, ZHU W D. A facile starch-assisted sol-gel method to synthesize K-doped Li2ZrO3 sorbents with excellent CO2 capture properties[J]. J Am Ceram Soc, 2012,95(5):1544-1548. doi: 10.1111/jace.2012.95.issue-5

    17. [17]

      SHAN S, JIA Q, JIANG L, LI Q, WANG Y, PENG J. Preparation and kinetic analysis of Li4SiO4 sorbents with different silicon sources for high temperature CO2 capture[J]. Chin Sci Bull, 2012,57(19):2475-2479. doi: 10.1007/s11434-012-5188-x

    18. [18]

      YIN Z, WANG K, ZHAO P, TANG X. Enhanced CO2 chemisorption properties of Li4SO4, using a water hydration-calcination technique[J]. Ind Eng Chem Res, 2016,55(4):1142-1146. doi: 10.1021/acs.iecr.5b03746

    19. [19]

      TANG Xiao-dan. Synthesis and characterization of nanosized Li2ZrO3 and Li4SiO4 materials as carbon dioxide sorbents[D]. Jinhua: Zhejiang Normal University, 2012.

    20. [20]

      YUE Ling-li, XIAO Qiao, ZHONG Yi-jun, ZHU Wei-dong. Influence of metallic element dopant on CO2, absorption properties of Li4SiO4 materials[J]. Modern Chem Ind, 2014(34):70-73.  

    21. [21]

      TONG Yi, HUANG Xue-qin, XU Chun-hui, XIAO Qiang, ZHONG Yi-jun, ZHU Wei-dong. A liquid phase method combined with freeze-drying technique to lithium silicate materials and their carbon dioxide absorption properties at high temperatures[J]. J Adv Phys Chem, 2015,04(2):77-83. doi: 10.12677/JAPC.2015.42010

    22. [22]

      VENEGAS M J, FREGOSO-ISRAEL E, ESCAMILLA R, PFEIFFER H. Kinetic and reaction mechanism of CO2 sorption on Li4SiO4: Study of the particle size effect[J]. Ind Eng Chem Res, 2007,46(8):2407-2412. doi: 10.1021/ie061259e

    23. [23]

      CHEN D L, SHANG H, ZHU W D, KRISHNA R. Transient breakthroughs of CO2/CH4 and C3H6/C3H8 mixtures in fixed beds packed with Ni-MOF-74[J]. Chem Eng Sci, 2014,117:407-415. doi: 10.1016/j.ces.2014.07.008

  • 加载中
    1. [1]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    2. [2]

      Xiangyu ChenAihao XuDong WeiFang HuangJunjie MaHuibing HeJing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175

    3. [3]

      Liang Ma Zhou Li Zhiqiang Jiang Xiaofeng Wu Shixin Chang Sónia A. C. Carabineiro Kangle Lv . Effect of precursors on the structure and photocatalytic performance of g-C3N4 for NO oxidation and CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100416-100416. doi: 10.1016/j.cjsc.2024.100416

    4. [4]

      Longsheng ZhanYuchao WangMengjie LiuXin ZhaoDanni DengXinran ZhengJiabi JiangXiang XiongYongpeng Lei . BiVO4 as a precatalyst for CO2 electroreduction to formate at large current density. Chinese Chemical Letters, 2025, 36(3): 109695-. doi: 10.1016/j.cclet.2024.109695

    5. [5]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    6. [6]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    7. [7]

      Mingjiao LuZhixing WangGui LuoHuajun GuoXinhai LiGuochun YanQihou LiXianglin LiDing WangJiexi Wang . Boosting the performance of LiNi0.90Co0.06Mn0.04O2 electrode by uniform Li3PO4 coating via atomic layer deposition. Chinese Chemical Letters, 2024, 35(5): 108638-. doi: 10.1016/j.cclet.2023.108638

    8. [8]

      Huyi Yu Renshu Huang Qian Liu Xingfa Chen Tianqi Yu Haiquan Wang Xincheng Liang Shibin Yin . Te-doped Fe3O4 flower enabling low overpotential cycling of Li-CO2 batteries at high current density. Chinese Journal of Structural Chemistry, 2024, 43(3): 100253-100253. doi: 10.1016/j.cjsc.2024.100253

    9. [9]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    10. [10]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    11. [11]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Zhijie ZhangXun LiHuiling TangJunhao WuChunxia YaoKui Li . Cs2CuBr4 perovskite quantum dots confined in mesoporous CuO framework as a p-n type S-scheme heterojunction for efficient CO2 photoconversion. Chinese Chemical Letters, 2024, 35(11): 109700-. doi: 10.1016/j.cclet.2024.109700

    14. [14]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    15. [15]

      Dai-Huo LiuAo WangHong-Yan LüXing-Long WuDan LuoWen-Hao LiJin-Zhi GuoHaozhen DouQianyi MaZhongwei ChenIn situ constructing (MnS/Mn2SnS4)@N,S-ACTs heterostructure with superior Na/Li-storage capabilities in half-cells and pouch full-cells. Chinese Chemical Letters, 2024, 35(11): 109285-. doi: 10.1016/j.cclet.2023.109285

    16. [16]

      Caili YangTao LongRuotong LiChunyang WuYuan-Li Ding . Pseudocapacitance dominated Li3VO4 encapsulated in N-doped graphene via 2D nanospace confined synthesis for superior lithium ion capacitors. Chinese Chemical Letters, 2025, 36(2): 109675-. doi: 10.1016/j.cclet.2024.109675

    17. [17]

      Jiaxing Cai Wendi Xu Haoqiang Chi Qian Liu Wa Gao Li Shi Jingxiang Low Zhigang Zou Yong Zhou . 具有0D/2D界面的InOOH/ZnIn2S4空心球S型异质结用于增强光催化CO2转化性能. Acta Physico-Chimica Sinica, 2024, 40(11): 2407002-. doi: 10.3866/PKU.WHXB202407002

    18. [18]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    19. [19]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    20. [20]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

Metrics
  • PDF Downloads(1)
  • Abstract views(820)
  • HTML views(51)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return