Citation: ZHANG Li, DAI Chao-hua, LIANG Qing-man, YAN Jian-hui, ZHOU Min-jie. Preparation of ZnCr2O4-ZnO composite photocatalyst based on the hydrotalcite precursor and its performance in hydrogen production[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(10): 1266-1274. shu

Preparation of ZnCr2O4-ZnO composite photocatalyst based on the hydrotalcite precursor and its performance in hydrogen production

  • Corresponding author: ZHOU Min-jie, zmj0104@163.com
  • Received Date: 26 June 2017
    Revised Date: 13 August 2017

    Fund Project: The project was supported by the National Natural Science Foundation of China 51372080Scientific Research Foundation of Hunan Provincial Education Department of China 15A076the Natural Science Foundation of Hunan Provincial of China 2017JJ2108The project was supported by the National Natural Science Foundation of China (51372080), the Natural Science Foundation of Hunan Provincial of China (2017JJ2108) and Scientific Research Foundation of Hunan Provincial Education Department of China (15A076)

Figures(10)

  • ZnCr2O4-ZnO composite photocatalyst with heterogeneous structure was synthesized by grinding hydrothermal method and characterized by TG-DTA, XRD, SEM, HRTEM, DRS, and N2 absorption; its photocatalytic activity in H2 production was evaluated by using oxalic acid as the sacrificial agent under simulated sunlight irradiation and compared with those of the ZnCr2O4-ZnO samples prepared by coprecipitation, urea reflux and urea hydrothermal methods. The results indicate that Zn-Cr precursors prepared by four methods show a certain hydrotalcite structure; the catalyst samples prepared at 500℃ are spherical nanoparticles, but different in agglomeration status, specific surface area and pore structure parameters. The ZnCr2O4-ZnO nanoparticles prepared by a grinding hydrothermal method exhibits the optimized photocurrent response and photocatalytic activity; the yield of hydrogen production is 0.956 mmol/(h·gcat), which is 2.3, 1.5 and 3.0 times higher than that of the catalyst samples prepared by coprecipitation, urea reflux and urea hydrothermal methods, respectively. On the basis of these results, a possible mechanism for the hydrogen production over ZnCr2O4-ZnO composite photocatalyst with heterogeneous structure was then proposed.
  • 加载中
    1. [1]

      FUJISHIMA K, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972,238(7):37-38.  

    2. [2]

      WANG K, XU J M, WANG X T. The effects of ZnO morphology on photocatalytic efficiency of ZnO/RGO nanocomposites[J]. Appl Surf Sci, 2016,360:270-275. doi: 10.1016/j.apsusc.2015.10.190

    3. [3]

      LIU Zong-yuan, WANG Gui-yun, LIU Xian-ping, WANG Yan-ji. Preparation of CuCrO2 and the photocatalytic properties of its composites[J]. J Fuel Chem Technol, 2013,41(12):1473-148.  

    4. [4]

      YU X L, AN X Q, GENC A, IBANEZ M, ARBIOL J, ZHANG Y H, and CABOT A. Cu2ZnSnS4-PtM (M=Co, Ni) Nanoheterostructures for Photocatalytic Hydrogen Evolution[J]. J Phys Chem C, 2015,119(38):21882-21888. doi: 10.1021/acs.jpcc.5b06199

    5. [5]

      WANG Ze-yan, HUANG Bai-biao1, DAI Ying. Design and Synthesis of Highly Reactive Photocatalysts[J]. Mater China, 2017,36(1):7-17.  

    6. [6]

      NIKITENKO S I, CHAVE T, CAU C, BRAU H-P, FLAUD V. Photothermal Hydrogen Production Using Noble-Metal-Free Ti@TiO2 Core-Shell Nanoparticles under Visible-NIR Light Irradiation[J]. ACS Catalysis, 2015,5(8):4790-4795. doi: 10.1021/acscatal.5b01401

    7. [7]

      KLINGSHIM C. ZnO:material, physics and applications[J]. ChemPhysChem, 2007,8(6):782-803. doi: 10.1002/(ISSN)1439-7641

    8. [8]

      WANG Z L. Zinc oxide nanostructures:growth, properties and applications[J]. J Phys:Condens Matter, 2004,16(25):R829-R858. doi: 10.1088/0953-8984/16/25/R01

    9. [9]

      WANG Z, TERAMURA K, HOSOKAWA S, TANAKA T. Highly efficient photocatalytic conversion of CO2 into solid CO using H2O as a reductant over Ag-modified ZnGa2O4[J]. J Mater Chem A, 2015,3(21):11313-11319. doi: 10.1039/C5TA01697E

    10. [10]

      ZHANG L, YAN J H, ZHOU M J, YANG Y H, LIU Y N. Fabrication and photocatalytic properties of spheres-in-spheres ZnO/ZnAl2O4 composite hollow microspheres[J]. Appl Surf Sci, 2013,268:237-245. doi: 10.1016/j.apsusc.2012.12.069

    11. [11]

      YANG H H, YAN J H, LU Z, CHENG X, TANG Y G. Photocatalytic activity evaluation of tetragonal CuFe2O4 nanoparticles for the H2 evolution under visible light irradiation[J]. J Alloys Compd, 2009,476(1):715-719.  

    12. [12]

      GHOLAMI T, SALAVATI-NIASARI M, VARSHOY S. Investigation of the electrochemical hydrogen storage and photocatalytic properties of CoAl2O4 pigment:Green synthesis and characterization[J]. Int J Hydrogen Energy, 2016,41(22):9418-9426. doi: 10.1016/j.ijhydene.2016.03.144

    13. [13]

      PENG C, GAO L. Optical and photocatalytic properties of spinel ZnCr2O4 nanoparticles synthesized by a hydrothermal route[J]. J Am Ceram Soc, 2008,91(7):2388-2390. doi: 10.1111/jace.2008.91.issue-7

    14. [14]

      BOUMAZA S, BOUGUELIAA , BOUARAB R, TRARI M. Physical and photoelectrochemical studies for hydrogen photo-evolution over the spinel ZnCr2O4[J]. Int J Hydrogen Energy, 2009,34(11):4963-4967. doi: 10.1016/j.ijhydene.2008.11.059

    15. [15]

      KUMAR A, DIXIT T. Phase Transformation and Optical Properties of Annealed Hydrothermally Synthesized ZnO/ZnCr2O4 Nanocomposites[J]. Int J Appl Ceram. Technol, DOI:2016,10.1111/ijac.12546.

    16. [16]

    17. [17]

      PALMER S J, FROST R L, NGUYEN T. Hydrotalcites and their role in coordination of anions in Bayer liquors:anion binding in layered double hydroxides[J]. Coord Chem Rev, 2009,253(1):250-267.  

    18. [18]

      MOHAPATRA L, PARIDA K M. Zn-Cr layered double hydroxide:Visible light responsive photocatalyst for photocatalytic degradation of organic pollutants[J]. Sep Purif Technol, 2012,91:73-80. doi: 10.1016/j.seppur.2011.10.028

    19. [19]

      KIM S H, FAHEL J, DURAND PAndré E, Carteret C. Ternary layered double hydroxides (LDH) based on ZnAl substituted with Co, Cu for efficient photocatalysts designs[J]. Eur J Inorg Chem, DOI:2016,10.1002/ejic.01213.

    20. [20]

      POKHREL S, JEYARAJ B, NAGARAJA K S. Humidity-sensing properties of ZnCr2O4-ZnO composites[J]. Mater Lett, 2003,57(22):3543-3548.  

    21. [21]

      JIANG C, LEE K Y, PARLETT C M A, BAYAZIT M K, LAU C C, RUAN Q S, MONIZ S J A, LEE A F, TANG J W. Size-controlled TiO2 nanoparticles on porous hosts for enhanced photocatalytic hydrogen production[J]. Appl Catal, A, 2016,521:133-139. doi: 10.1016/j.apcata.2015.12.004

    22. [22]

      CHENG X, HUANG X R, WANG X Z, SUN D Z. Influence of calcination on the adsorptive removal of phosphate by Zn-Al layered double hydroxides from excess sludge liquor[J]. J Hazard Mater, 2010,177:516-523. doi: 10.1016/j.jhazmat.2009.12.063

    23. [23]

      HUO R J, KUANG Y, ZHAO Z P, ZHANG F Z, XU S L. Enhanced photocatalytic performances of hierarchical ZnO/ZnAl2O4 microsphere derived from layered double hydroxide precursor spray-dried microsphere[J]. J Colloid Interface Sci, 2013,407:17-21. doi: 10.1016/j.jcis.2013.06.067

    24. [24]

      Yu X X, Yu J G, CHENG B, JARONIEC M. Synthesis of hierarchical flower-like AlOOH and TiO2/AlOOH superstructures and their enhanced photocatalytic properties[J]. J Phys. Chem, 2009,113(40):17527-17535.  

    25. [25]

      GUO Q, ZHANG Z H, MA X P, JING K, SHEN M L, YU N, TANG J H, DIONYSIOU D D. Preparation of N, F-codoped TiO2 nanoparticles by three different methods and comparison of visible-light photocatalytic performances[J]. Sep Purif Technol, 2017,v175:305-313.

    26. [26]

      SREETHAWONG T, PUANGPETCH T, CHAVADEJ S, YOSHIKAWA S. Quantifying influence of operational parameters on photocatalytic H2 evolution over Pt-loaded nanocrystalline mesoporous TiO2 prepared by single-step sol-gel process with surfactant template[J]. J Power Sources, 2007,165(2):861-869. doi: 10.1016/j.jpowsour.2006.12.050

    27. [27]

      TAN D Z, FAN W J, XIONG W N, SUN H X, LI A, DENG W Q, MENG C G. Study on adsorption performance of conjugated microporous polymers for hydrogen and organic solvents:The role of pore volume[J]. Eur Polym J, 2012,48(4):705-711. doi: 10.1016/j.eurpolymj.2012.01.012

    28. [28]

      ZHANG Y, TANG Z R, FU X, XU Y J. Engineering the unique 2D mat of graphene to achieve graphene-TiO2 nanocomposite for photocatalytic selective transformation:what advantage does graphene have over its forebear carbon nanotube[J]. ACS Nano, 2011,5:7426-7435. doi: 10.1021/nn202519j

    29. [29]

      HAO Rui-peng, YANG Peng-ju, WANG Zhi-jian, ZHU Zhen-ping. Effect of noble metals loaded TiO2 on the selectivity of photocatalytic CO2 reduction[J]. J Fuel Chem Technol, 2015,43(1):94-99.  

    30. [30]

      PARHI P, MANIVANNAN V. Microwave metathetic approach for the synthesis and characterization of ZnCr2O4[J]. J Eur Ceram Soc, 2008,28:1665-1670. doi: 10.1016/j.jeurceramsoc.2007.11.005

    31. [31]

      ZHANG Li, YAN Jian-hui, ZHOU Min-jie, YANG Ya-hui, LIU You-nian. Preparation and Photocatalytic Property of Hollow Sphere-Like ZnO/ZnAl2O4 Composite Photocatalysts with High Specific Surface Area[J]. Chinese J Inorg Chem, 2012,28(9):1827-1834.

    32. [32]

      WEI Yang, MA Xin-guo, ZHU Lin, HE Hua, HUANG Chu-yun. Interfacial cohesive interaction and band modulation of two-dimensional MoS2/graphene heterostructure[J]. Acta Phys Sin, 2017,66(8)087101-1-087101-10.  

  • 加载中
    1. [1]

      Jiawei HuKai XiaAo YangZhihao ZhangWen XiaoChao LiuQinfang Zhang . Interfacial Engineering of Ultrathin 2D/2D NiPS3/C3N5 Heterojunctions for Boosting Photocatalytic H2 Evolution. Acta Physico-Chimica Sinica, 2024, 40(5): 2305043-0. doi: 10.3866/PKU.WHXB202305043

    2. [2]

      Tong WANGQinyue ZHONGQiong HUANGWeimin GUOXinmei LIU . Mn-doped carbon quantum dots/Fe-doped ZnO flower-like microspheres heterojunction: Construction and photocatalytic performance. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1589-1600. doi: 10.11862/CJIC.20250011

    3. [3]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    4. [4]

      Kun RongCuilian WenJiansen WenXiong LiQiugang LiaoSiqing YanChao XuXiaoliang ZhangBaisheng SaZhimei Sun . Hierarchical MoS2/Ti3C2Tx heterostructure with excellent photothermal conversion performance for solar-driven vapor generation. Acta Physico-Chimica Sinica, 2025, 41(6): 100053-0. doi: 10.1016/j.actphy.2025.100053

    5. [5]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    7. [7]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    8. [8]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    9. [9]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

    10. [10]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    11. [11]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    12. [12]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

    13. [13]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    14. [14]

      Chenye AnSikandaier AbiduweiliXue GuoYukun ZhuHua TangDongjiang Yang . Hierarchical S-scheme Heterojunction of Red Phosphorus Nanoparticles Embedded Flower-like CeO2 Triggering Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2405019-0. doi: 10.3866/PKU.WHXB202405019

    15. [15]

      Yuhang ZhangWeiwei ZhaoHongwei LiuJunpeng Lü . Progress on Self-Powered Photodetectors Based on Low-Dimensional Materials. Acta Physico-Chimica Sinica, 2025, 41(3): 2310004-0. doi: 10.3866/PKU.WHXB202310004

    16. [16]

      Pengcheng YanPeng WangJing HuangZhao MoLi XuYun ChenYu ZhangZhichong QiHui XuHenan Li . Engineering Multiple Optimization Strategy on Bismuth Oxyhalide Photoactive Materials for Efficient Photoelectrochemical Applications. Acta Physico-Chimica Sinica, 2025, 41(2): 2309047-0. doi: 10.3866/PKU.WHXB202309047

    17. [17]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    18. [18]

      Linfeng XiaoWanlu RenShishi ShenMengshan ChenRunhua LiaoYingtang ZhouXibao Li . Enhancing Photocatalytic Hydrogen Evolution through Electronic Structure and Wettability Adjustment of ZnIn2S4/Bi2O3 S-Scheme Heterojunction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308036-0. doi: 10.3866/PKU.WHXB202308036

    19. [19]

      You WuChang ChengKezhen QiBei ChengJianjun ZhangJiaguo YuLiuyang Zhang . Efficient Photocatalytic Production of H2O2 over ZnO/D-A Conjugated Polymer S-scheme Heterojunction and Charge Transfer Dynamics Investigation. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-0. doi: 10.3866/PKU.WHXB202406027

    20. [20]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

Metrics
  • PDF Downloads(4)
  • Abstract views(1907)
  • HTML views(221)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return