Citation: LÜ Hai-yan, FANG Zheng-mei, ZHANG Yuan-yuan, QIAN Yu-feng, PAN Tie-ying, ZHANG De-xiang. Revalidation of measurement method of free radical concentration and its application in coal chemistry[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(11): 1281-1287. shu

Revalidation of measurement method of free radical concentration and its application in coal chemistry

  • Corresponding author: ZHANG De-xiang, zdx@ecust.edu.cn
  • Received Date: 25 July 2019
    Revised Date: 7 October 2019

    Fund Project: The project was supported by the National Key Research and Development Program of China (2016YFB0600303)the National Key Research and Development Program of China 2016YFB0600303

Figures(3)

  • The standard curve method established by predecessors to measure the concentration of free radicals in coal was optimized to take the quadratic integral area ratio of the DPPH standard sample to the reference sample as new parameters. The results show that the relative error between the measured and theoretical values of the new parameter standard curve method is less than 5%, and the relative standard deviations of repeatability and reproducibility are less than 3%. The new parameter standard curve method was used to analyze the free radical concentration of the coal with different coal ranks and the asphaltene of Xinjiang Heishan Coal (HS). It is found that with the increase of coal rank, the free radical concentration in the coal increases gradually, from 8.531×1017/g for low-rank lignite to 3.37899×1019/g for high-rank anthracite. In the process of HS coal liquefaction, with the increase of liquefaction temperature, the free radical concentration of asphaltene decreases gradually, from 1.5793×1018/g at 290℃ to 7.410×1017/g at 450℃. The change trend of free radical is concentration in the asphaltene consistent with that of asphaltene yield.
  • 加载中
    1. [1]

      LI Xiao-jiong. Status and countermeasures of clean and efficient utilization of coal resources in China[J]. Coal Econ Res, 2019,39(1):71-75.  

    2. [2]

      JACOBSO M Z. Review of solutions to global warming, air pollution, and energy security[J]. Energy Environ Sci, 2009,2:148-173. doi: 10.1039/B809990C

    3. [3]

      RYBERG M W, OWSIANIAK M, LAURENT A, HAUSCHILD M Z. Power generation from chemically cleaned coals:Do environmental benefits of firing cleaner coal outweigh environmental burden of cleaning[J]. Energy Environ Sci, 2015,8:2435-2447. doi: 10.1039/C5EE01799H

    4. [4]

      UBERSFELD J, ETIENNE A, COMBRISSON J. Paramagnetic resonance, a new property of coal-like materials[J]. Nature, 1954,174(4430)614.  

    5. [5]

      CURRAN G P, STRUCK R T, GORIN E. Mechanism of hydrogen-transfer process to coal and coal extract[J]. Ind Eng Chem Process Des, 1967,6(2):166-173. doi: 10.1021/i260022a003

    6. [6]

      PETRAKIS L, GRANDY D W. Free radicals in coals and coal conversion. 2. Effect of liquefaction processing conditions on the formation and quenching of coal free radicals[J]. Fuel, 1980,59(4):227-232. doi: 10.1016/0016-2361(80)90139-8

    7. [7]

      PETRAKIS L, GRANDY D W. Free radicals in coals and coal conversion. 4. Investigation of the free radicals in selected macerals upon liquefaction[J]. Fuel, 1981,60(2):120-124. doi: 10.1016/0016-2361(81)90005-3

    8. [8]

      MALHOTRA V M, BUCKMASTER H A. 9 and 34 GHz EPR study of the free radicals in various asphaltenes:Statistical correlation of the g-values with heteroatom content[J]. Org Geochem, 1985,8(4):235-239. doi: 10.1016/0146-6380(85)90001-4

    9. [9]

      RUDNICK L R, TUETING D. Investigation of free radicals produced during coal liquefaction using ESR[J]. Fuel, 1984,63(2):153-157. doi: 10.1016/0016-2361(84)90028-0

    10. [10]

      LIU G G, QIU G Z. A study of ESR spectrum of coal[J]. Chin J Magn Reson, 1999,16(2):177-180.  

    11. [11]

      QIU N S, LI H L, JIN Z J. Temperature and time effect on the concentrations of free radicals in coal:Evidence from laboratory pyrolysis experiments[J]. Int J Coal Geol, 2007,69(3):220-228. doi: 10.1016/j.coal.2006.04.002

    12. [12]

      ZHENG Rong-ping, PAN Tie-ying, SHI Xin-mei. Quantitative determination of free radical content in coal by standard curve method[J]. J Mag Res, 2011,28(2):259-264. doi: 10.3969/j.issn.1000-4556.2011.02.010

    13. [13]

      LIU Rui-min, XIA Wei-ping, ZHANG De-xiang. Coal liquefaction and the free radicals concentration of liquefied with the different capability of hydrogen-donor[C]//Papers collection of 2010 forum on development and demonstration projects of new coal chemical industry in China. East China University of Science and Technology, 2010: 228-235. 

    14. [14]

      ZHANG Peng-zhou, WANG Zhe-fu. Study on free radicals of some coals in China by ESR spectrum[J]. J Fuel Chem Technol, 1992,20(3):85-90.

    15. [15]

      RETCOFSKY H L, THOMPSON G P, HOUGH M. Electron spin resonance studies of coals and coal-derived asphaltenes[J]. ACS Symp Ser, 1977,22(5):90-97.  

    16. [16]

      SMITH M B, MARCH J. Advanced Organic Chemistry[M]. Hoboken:John Wiley & Sons, 2007.

    17. [17]

      GUO De-yong, HAN De-xin. Electron paramagnetic resonance studies of the structurally disturbed coals[J]. J China Univ Min Technol, 1999,28(1):94-97. doi: 10.3321/j.issn:1000-1964.1999.01.023

    18. [18]

      CHEN Li-shi. Structure analysis and molecular model construction of coal and its intermediate products derived from coal hydroliquefaction[D]. Shanghai: East China University of Science and Technology, 2018.

    19. [19]

      SILBERNAGEL B G, GEBHARD A, DYRKACZ G R. Electron spin resonance of isolated coal macerals[J]. Fuel, 1986,65(4):558-565. doi: 10.1016/0016-2361(86)90049-9

    20. [20]

      WU Ai-ping, PAN Tie-ying, ZHANG De-xiang. Study on free radicals in low rank coal pyrolysis process[J]. Coal Convers, 2012,35(2):1-5. doi: 10.3969/j.issn.1004-4248.2012.02.001

    21. [21]

      PILAWA B, PUSZ S, KRZESINSKA K. Application of electron paramagnetic resonance spectroscopy to examination of carbonized coal blends[J]. Inter J Coal Geol, 2009,77(3):372-376.  

    22. [22]

      NING Yi-fei, ZHANG Yuan-yuan, ZHOU Yang, CHEN Li-shi, PAN Tie-ying, ZHANG De-xiang. Effect of reaction time on free radical concentration in hydrogenation liquefaction of Naomaohu coal[J]. J Fuel Chem Technol, 2018,46(11):1281-1287. doi: 10.3969/j.issn.0253-2409.2018.11.001 

  • 加载中
    1. [1]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    2. [2]

      Lei Shi . Nucleophilicity and Electrophilicity of Radicals. University Chemistry, 2024, 39(11): 131-135. doi: 10.3866/PKU.DXHX202402018

    3. [3]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    4. [4]

      Hongting Yan Aili Feng Rongxiu Zhu Lei Liu Dongju Zhang . Reexamination of the Iodine-Catalyzed Chlorination Reaction of Chlorobenzene Using Computational Chemistry Methods. University Chemistry, 2025, 40(3): 16-22. doi: 10.12461/PKU.DXHX202403010

    5. [5]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    6. [6]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    7. [7]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    8. [8]

      Ruilin Han Xiaoqi Yan . Comparison of Multiple Function Methods for Fitting Surface Tension and Concentration Curves. University Chemistry, 2024, 39(7): 381-385. doi: 10.3866/PKU.DXHX202311023

    9. [9]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    10. [10]

      Yuan GAOYiming LIUChunhui WANGZhe HANChaoyue FANJie QIU . A hexanuclear cerium oxo cluster stabilized by furoate: Synthesis, structure, and remarkable ability to scavenge hydroxyl radicals. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 491-498. doi: 10.11862/CJIC.20240271

    11. [11]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    12. [12]

      Meng Lin Heng Zhang Shiling Yuan . Exploring a Combined Theory-Practice-Simulation Teaching Model in Physical Chemistry: A Case Study of Surface Tension. University Chemistry, 2025, 40(4): 189-194. doi: 10.12461/PKU.DXHX202407053

    13. [13]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    14. [14]

      Shuyong Zhang Wenfeng Jiang Changsheng Lu Genrong Qiang Yongmei Liu Xiangyang Tang Dongcheng Liu Lili Zhang . Suggestions on Construction and Evaluation Standards for First-Class Chemical Experiment Teaching. University Chemistry, 2025, 40(5): 9-14. doi: 10.12461/PKU.DXHX202502114

    15. [15]

      Tao Jiang Yuting Wang Lüjin Gao Yi Zou Bowen Zhu Li Chen Xianzeng Li . Experimental Design for the Preparation of Composite Solid Electrolytes for Application in All-Solid-State Batteries: Exploration of Comprehensive Chemistry Laboratory Teaching. University Chemistry, 2024, 39(2): 371-378. doi: 10.3866/PKU.DXHX202308057

    16. [16]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    17. [17]

      Yujia Luo Yunpeng Qi Huiping Xing Yuhu Li . The Use of Viscosity Method for Predicting the Life Expectancy of Xuan Paper-based Heritage Objects. University Chemistry, 2024, 39(8): 290-294. doi: 10.3866/PKU.DXHX202401037

    18. [18]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    19. [19]

      Bingliang Li Yuying Han Dianyang Li Dandan Liu Wenbin Shang . One-Step Synthesis of Benorilate Guided by Green Chemistry Principles and in vivo Dynamic Evaluation. University Chemistry, 2024, 39(6): 342-349. doi: 10.3866/PKU.DXHX202311070

    20. [20]

      Zhuo Wang Xue Bai Kexin Zhang Hongzhi Wang Jiabao Dong Yuan Gao Bin Zhao . MOF模板法合成氮掺杂碳材料用于增强电化学钠离子储存和去除. Acta Physico-Chimica Sinica, 2025, 41(3): 2405002-. doi: 10.3866/PKU.WHXB202405002

Metrics
  • PDF Downloads(4)
  • Abstract views(1068)
  • HTML views(139)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return