Citation: SHANG Shuang, GUO Chao-qiang, LAN Kui, LI Ze-shan, QIN Zhen-hua, HE Wei-tao, LI Jian-fen. Preparation of Ni/Zr-MOF catalyst and its application in pyrolysis of biomass[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(9): 1067-1074. shu

Preparation of Ni/Zr-MOF catalyst and its application in pyrolysis of biomass

  • Corresponding author: LI Jian-fen, lijfen@163.com
  • Received Date: 14 June 2019
    Revised Date: 5 July 2019

    Fund Project: The project was supported by the Technology Innovation Major Project of Hubei Province (2017ABA155) and the Central Committee Guide Local Science and Technology Development Special project of Hubei Province (2018ZYYD062)the Central Committee Guide Local Science and Technology Development Special project of Hubei Province 2018ZYYD062the Technology Innovation Major Project of Hubei Province 2017ABA155

Figures(8)

  • The catalytic co-pyrolysis of wet sewage sludge and wheat straw for hydrogen-rich gas production was experimentally investigated in a fixed bed reactor with Ni/Zr-MOF catalyst. The Ni/Zr-MOF catalyst was characterized by ultimate analysis, XRF, TG, XRD, SEM and BET. The effects of reactor temperature, straw content and Ni loading on the composition and yield of gasification gases were explored. The experimental results indicate that the mesoporous Zr-MOF support particles are octahedral with a specific surface area of 805.93 m2/g and an average pore diameter of 20.14 nm. The Ni/Zr-MOF catalyst has high thermal stability and catalytic activity. Compared with the pyrolysis without catalyst, the H2 yield increases significantly from 0.39 mol/kg to 12.65 mol/kg using Ni/Zr-MOF catalyst at 500 ℃. After reuse, the carbon deposits are formed on the surface of catalyst. With the increase in reactor temperature, the catalytic activity decreases gradually due to the agglomeration of the catalyst. Therefore, the Ni/Zr-MOF catalyst is suitable for catalytic pyrolysis of biomass at lower temperature.
  • 加载中
    1. [1]

      SAXENA R C, ADHIKARI D K, GOYAL H B. Biomass-based energy fuel through biochemical routes:A review[J]. Renewable Sustainable Energy Rev, 2009,13(1):167-178. doi: 10.1016/j.rser.2007.07.011

    2. [2]

      ZHAO Z Y, YAN H. Assessment of the biomass power generation industry in China[J]. Renew Energy, 2012,37(1):53-60.

    3. [3]

      ISMAIL T M, EL-SALAM M A. Parametric studies on biomass gasification process on updraft gasifier high temperature air gasification[J]. Appl Therm Eng, 2017,112:1460-1473. doi: 10.1016/j.applthermaleng.2016.10.026

    4. [4]

      XU X, ZHAO B, SUN M, CHEN X, ZHANG M, LI H, XU S. Co-pyrolysis characteristics of municipal sewage sludge and hazelnut shell by TG-DTG-MS and residue analysis[J]. Waste Management, 2017,62:91-100. doi: 10.1016/j.wasman.2017.02.012

    5. [5]

      HAN J, KIM H. The reduction and control technology of tar during biomass gasification/pyrolysis:An overview[J]. Renewable Sustainable Energy Rev, 2008,12(2):397-416. doi: 10.1016/j.rser.2006.07.015

    6. [6]

      ZHOU Y, WANG W, SUN J, FU L, SONG Z, ZHAO X, MAO Y. Microwave-induced electrical discharge of metal strips for the degradation of biomass tar[J]. Energy, 2017,126:42-52. doi: 10.1016/j.energy.2017.03.008

    7. [7]

      YANG Ze, LI Ting, WANG Mei-jun, CHANG Li-ping, REN Xiu-rong. Research progress on Ni-based catalyst for tar reforming in biomass gasification[J]. Chem Ind Eng Prog, 2016,35(10):3155-3163.  

    8. [8]

      LI J, LIU J, LIAO S, YAN R. Hydrogen-rich gas production by air-steam gasification of rice husk using supported nano-NiO/γ-Al2O3 catalyst[J]. Int J Hydrog Energy, 2010,35(14):7399-7404. doi: 10.1016/j.ijhydene.2010.04.108

    9. [9]

      JI Ting-ting, YANG Xiao-xuan, WANG Ya-jing, WANG Yu-he. Steam reforming of phenol for producing hydrogen over nickel support on MgO prepared by different methods[J]. J Fuel Chem Technol, 2016,44(9):1131-1137. doi: 10.3969/j.issn.0253-2409.2016.09.015

    10. [10]

      SHI X W, XIN X, LIU Z, YAO L U, HONG-XIA L I, JIAN-FEN L I, CHEN Q P. Preparation and characterization of Ni/TPC catalyst and applied in straw pyrolysis gas reforming[J]. J Fuel Chem Technol, 2018,46(6):659-665. doi: 10.1016/S1872-5813(18)30028-8

    11. [11]

      SHI Xun-wang, LI Jian-fen, XIN Xin, LI Hong-xia, LU Yao, LIU Zhao, CHENG Qun-peng. Preparation of NiO-Fe2O3/PG-γ-Al2O3 catalysts and its application in pyrolysis of biomass straw[J]. J Fuel Chem Technol, 2017,45(12):1434-1440. doi: 10.3969/j.issn.0253-2409.2017.12.004

    12. [12]

      REN J, LANGMI H W, NORTH B C, MATHE M, BESSARABOV D. Modulated synthesis of zirconium-metal organic framework (Zr-MOF) for hydrogen storage applications[J]. Int J Hydrog Energy, 2014,39(2):890-895. doi: 10.1016/j.ijhydene.2013.10.087

    13. [13]

      LV P M, XIONG Z H, CHANG J, WU C Z, CHEN Y, ZHU J X. An experimental study on biomass air-steam gasification in a fluidized bed[J]. Bioresour Technol, 2004,95(1):95-101. doi: 10.1016/j.biortech.2004.02.003

    14. [14]

      QIAN K, KUMAR A. Catalytic reforming of toluene and naphthalene (model tar) by char supported nickel catalyst[J]. Fuel, 2017,187:128-136. doi: 10.1016/j.fuel.2016.09.043

    15. [15]

      HU M, LAGHARI M, CUI B, XIAO B, ZHANG B, GUO D. Catalytic cracking of biomass tar over char supported nickel catalyst[J]. Energy, 2018,145:228-237. doi: 10.1016/j.energy.2017.12.096

    16. [16]

      XIAO X, CAO J, MENG X, LE D D, LI L, OGAWA Y, SATO K, TAKARADA T. Synthesis gas production from catalytic gasification of waste biomass using nickel-loaded brown coal char[J]. Fuel, 2013,103:135-140. doi: 10.1016/j.fuel.2011.06.077

    17. [17]

      SHEN W, MOMOI H, KOMATSUBARA K, SAITO T, YOSHIDA A, NAITO S. Marked role of mesopores for the prevention of sintering and carbon deposition in dry reforming of methane over ordered mesoporous Ni-Mg-Al oxides[J]. Catal Today, 2011,171(1):150-155. doi: 10.1016/j.cattod.2011.04.003

    18. [18]

      YANG Y, ZHU J, ZHU G, YANG L, ZHU Y. The effect of high temperature on syngas production by immediate pyrolysis of wet sewage sludge with sawdust[J]. J Therm Anal Calorim, 2018,132(3):1783-1794. doi: 10.1007/s10973-018-7143-9

    19. [19]

      HU M, GAO L, CHEN Z, MA C, ZHOU Y, CHEN J, MA S, LAGHARI M, XIAO B, ZHANG B, GUO D. Syngas production by catalytic in-situ steam co-gasification of wet sewage sludge and pine sawdust[J]. Energy Convers Manage, 2016,111:409-416. doi: 10.1016/j.enconman.2015.12.064

    20. [20]

      WANG Chen-guang, WANG Tie-jun, LÜ Peng-mei, CHANG Jie, XU Ying. Reforming of raw biomass fuel gas over monolithic catalyst[J]. J Fuel Chem Technol, 2007,35(3):285-288. doi: 10.3969/j.issn.0253-2409.2007.03.006

    21. [21]

      XU L, SONG H, CHOU L. Carbon dioxide reforming of methane over ordered mesoporous NiO-MgO-Al2O3 composite oxides[J]. Appl Catal B:Environ, 2011,108/109:177-190. doi: 10.1016/j.apcatb.2011.08.028

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    4. [4]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    5. [5]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    6. [6]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

    7. [7]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    8. [8]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    9. [9]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    10. [10]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    11. [11]

      Juntao Yan Liang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-. doi: 10.3866/PKU.WHXB202312024

    12. [12]

      Yuanyin Cui Jinfeng Zhang Hailiang Chu Lixian Sun Kai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-. doi: 10.3866/PKU.WHXB202405016

    13. [13]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    16. [16]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    17. [17]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    18. [18]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    19. [19]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    20. [20]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

Metrics
  • PDF Downloads(11)
  • Abstract views(1824)
  • HTML views(324)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return