Citation: WANG Yong-xing, HUANG Ya-ji, DONG Lu, YUAN Qi, DING Shou-yi, CHENG Hao-qiang, WANG Sheng, DUAN Yu-feng. Experimental study on mercury removal of coal-fired flue gas over Co-doped iron-based oxide sorbent[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(7): 785-794. shu

Experimental study on mercury removal of coal-fired flue gas over Co-doped iron-based oxide sorbent

  • Corresponding author: HUANG Ya-ji, heyyj@seu.edu.cn
  • Received Date: 20 April 2020
    Revised Date: 19 June 2020

    Fund Project: The project was supported by the National Key Research and Development Project (2016YFC0201105)the National Key Research and Development Projec 2016YFC0201105

Figures(12)

  • In this paper, the citric acid method was used to prepare the Co-doped iron-based oxide sorbent. The mercury removal performance of the FeCo sorbent was investigated by a fixed-bed mercury removal experimental device system, and the characterization methods of the specific surface area (BET), X-ray diffraction (XRD), H2-temperature programmed reduction (H2-TPR), Fourier infrared spectroscopy (FT-IR) and X-ray photoelectron spectroscopy (XPS) were performed to analyze the physical and chemical characteristics of the sorbent. The results of the study indicate that the specific surface area and pore structure characteristics are improved after the addition of Co into α -Fe2O3, and the redox performance of α -Fe2O3 is also improved. The maximum mercury removal efficiency of FeCo sorbent is obtained at 200-250 ℃ at the value of about 97%. The presence of O2 and NO in the gas benefits the removal of Hg0 over FeCo sorbent, while SO2 and H2O inhibit the removal of Hg0 over FeCo sorbent. The presence of NO can weaken the inhibitory effect of SO2 on mercury removal performance over FeCo. During the mercury removal process, the active components Fe3+, Co3+, and O* on the surface of the FeCo sorbent are consumed, particitate in the Hg0 oxidation process, and HgO is formed on the surface of the sorbent. After the mercury removal reaction in the atmosphere containing SO2, the sulfation of the sorbent surface is occurred, which weakens the mercury removal performance of the adsorbent.
  • 加载中
    1. [1]

      YANG Y J, LIU J, WANG Z. Reaction mechanisms and chemical kinetics of mercury transformation during coal combustion[J]. Prog Energy Combust, 2020,79100844. doi: 10.1016/j.pecs.2020.100844

    2. [2]

      ZHOU Qiang, DUAN Yu-feng, LU Ping. Research progress on in-duct mercury removal by sorbent injection in power plant[J]. Chem Ind Eng Prog, 2018,37(11):4460-4467.  

    3. [3]

      YANG J P, ZHANG M G, LI H L, QU W Q, ZHAO Y C, ZHANG J Y. Simultaneous NO reduction and Hg0 oxidation over La0.8Ce0.2MnO3 perovskite catalysts at low temperature[J]. Ind Eng Chem Res, 2018,57(29):9374-9385. doi: 10.1021/acs.iecr.8b01431

    4. [4]

      YANG Z Q, LI H L, YANG J P, FENG S H, LIU X, ZHAO J X, QU W Q, LI P, FENG Y, LEE P, SHIH K. Nanosized copper selenide functionalized zeolitic imidazolate framework-8(CuSe/ZIF-8) for efficient immobilization of gas-phase elemental mercury[J]. Adv Funct Mater, 2019,29(17)1807191. doi: 10.1002/adfm.201807191

    5. [5]

      ZHOU Q, LEI Y, LIU Y B, TAO X, LU P, DUAN Y F, WANG Y J. Gaseous elemental mercury removal by magnetic Fe-Mn-Ce sorbent in simulated flue gas[J]. Energy Fuels, 2018,32(12):12780-12786. doi: 10.1021/acs.energyfuels.8b03445

    6. [6]

      ZHANG S B, ZHAO Y C, YANG J P, ZHANG J Y, ZHENG C G. Fe-modified MnOx/TiO2 as the SCR catalyst for simultaneous removal of NO and mercury from coal combustion flue gas[J]. Chem Eng J, 2018,348:618-629. doi: 10.1016/j.cej.2018.05.037

    7. [7]

      LIU Y, WANG Y J, WANG H Q, WU Z B. Catalytic oxidation of gas-phase mercury over Co/TiO2 catalysts prepared by sol-gel method[J]. Catal Commun, 2011,12(14):1291-1294. doi: 10.1016/j.catcom.2011.04.017

    8. [8]

      CHEN G Y, ZHANG D, ZHANG A C, ZHANG Z H, LIU Z C, HOU L. CrOx-MnOx-TiO2 adsorbent with high resistance to SO2 poisoning for Hg0 removal at low temperature[J]. J Ind Eng Chem, 2017,55:119-127. doi: 10.1016/j.jiec.2017.06.035

    9. [9]

      ZHAO L K, LI C T, DU X Y, ZENG G M, GAO L, ZHAI Y B, WANG T, ZHANG J Y. Effect of Co addition on the performance and structure of V/ZrCe catalyst for simultaneous removal of NO and Hg0 in simulated flue gas[J]. Appl Surf Sci, 2018,437:390-399. doi: 10.1016/j.apsusc.2017.08.165

    10. [10]

      HUANG W J, XU H M, QU Z, ZHAO S J, CHEN W M, YAN N Q. Significance of Fe2O3 modified SCR catalyst for gas-phase elemental mercury oxidation in coal-fired flue gas[J]. Fuel Process Technol, 2016,149:23-28. doi: 10.1016/j.fuproc.2016.04.007

    11. [11]

      BAUER I, KNoLKER H-J. Iron catalysis in organic synthesis[J]. Chem Rev, 2015,115(9):3170-3387. doi: 10.1021/cr500425u

    12. [12]

      CHEN C, ZUO W Q, YANG J C, CUI H J, FU M L. Yolk-shell structured CoFe2O4 microspheres as novel catalysts for peroxymonosulfate activation for efficient degradation of butyl paraben[J]. RSC Adv, 2016,6(103):101361-101364. doi: 10.1039/C6RA24101H

    13. [13]

      LIU T, MAN C Y, GUO X, ZHENG C G. Experimental study on the mechanism of mercury removal with Fe2O3 in the presence of halogens:Role of HCl and HBr[J]. Fuel, 2016,173:209-216. doi: 10.1016/j.fuel.2016.01.054

    14. [14]

      MENG B, ZHAO Z B, WANG X Z, LIANG J J, QIU J S. Selective catalytic reduction of nitrogen oxides by ammonia over Co3O4 nanocrystals with different shapes[J]. Appl Catal B:Environ, 2013,129:491-500. doi: 10.1016/j.apcatb.2012.09.040

    15. [15]

      GAO L, LI C T, LI S H, ZHANG W, DU X Y, HUANG L, ZHU Y C, ZHAI Y B, ZENG G M. Superior performance and resistance to SO2 and H2O over CoOx-modified MnOx/biomass activated carbons for simultaneous Hg0 and NO removal[J]. Chem Eng J, 2019,371:781-795. doi: 10.1016/j.cej.2019.04.104

    16. [16]

      ZHANG A C, ZHENG W W, SONG J, HU S, LIU ZX, XIANG J. Cobalt manganese oxides modified titania catalysts for oxidation of elemental mercury at low flue gas temperature[J]. Chem Eng J, 2014,236:29-38. doi: 10.1016/j.cej.2013.09.060

    17. [17]

      ZHANG X P, CUI Y Z, WANG J X, TAN B J, LI C F, ZHANG H, HE G H. Simultaneous removal of Hg0 and NO from flue gas by Co0.3-Ce0.35-Zr0.35O2 impregnated with MnOx[J]. Chem Eng J, 2017,326:1210-1222. doi: 10.1016/j.cej.2017.06.014

    18. [18]

      SHI Y J, DENG S, WANG H M, HUANG J Y, LI Y K, ZHANG F, SHU X Q. Fe and Co modified vanadium-titanium steel slag as sorbents for elemental mercury adsorption[J]. RSC Adv, 2016,6(19):15999-16009. doi: 10.1039/C5RA26712A

    19. [19]

      SHAO C Z, LIU X F, MENG D M, XU Q, GUO Y L, GUO Y, ZHAN W C, WANG L, LU G Z. Catalytic performance of Co-Fe mixed oxide for NH3-SCR reaction and the promotional role of cobalt[J]. RSC Adv, 2016,6(70):66169-66179. doi: 10.1039/C6RA12025C

    20. [20]

      LI H H, WANG S K, WANG X, HU J J. Activity of CuCl2-modified cobalt catalyst supported on Ti-Ce composite for simultaneous catalytic oxidation of Hg0 and NO in a simulated pre-sco process[J]. Chem Eng J, 2017,316:1103-1113. doi: 10.1016/j.cej.2017.02.052

    21. [21]

      ZHANG P, PAN W G, GUO R T, ZHU X B, LIU J, QIN L, SHE X L. The Mo modified Ce/TiO2 catalyst for simultaneous Hg0 oxidation and NO reduction[J]. J Energy Inst, 2019,92(5):1313-1328. doi: 10.1016/j.joei.2018.10.003

    22. [22]

      APOSTOLESCU N, GEIGER B, HIZBULLAH K, JAN M T, KURETI S, REICHERT D, SCHOTT F, WEISWEILER W. Selective catalytic reduction of nitrogen oxides by ammonia on iron oxide catalysts[J]. Appl Catal B:Environ, 2006,62(1):104-114.  

    23. [23]

      LIU C X, GONG L, DAI R Y, LU M J, SUN T T, LIU Q, HUANG X G, HUANG Z. Mesoporous Mn promoted Co3O4 oxides as an efficient and stable catalyst for low temperature oxidation of CO[J]. Solid State Sci, 2017,71:69-74. doi: 10.1016/j.solidstatesciences.2017.07.006

    24. [24]

      LI H H, WANG S K, WANG X, TANG N, PAN S W, HU J J. Comparative study of Co/TiO2, Co-Mn/TiO2 and Co-Mn/Ti-Ce catalysts for oxidation of elemental mercury in flue gas[J]. Chem Pap, 2017,71(9):1569-1578. doi: 10.1007/s11696-017-0152-5

    25. [25]

      CHEN W, ZHANG Z A, BAO W Z, LAI Y Q, LI J, GAN Y Q, WANG J J. Hierarchical mesoporous γ-Fe2O3/carbon nanocomposites derived from metal organic frameworks as a cathode electrocatalyst for rechargeable Li-O2 batteries[J]. Electrochim Acta, 2014,134:293-301. doi: 10.1016/j.electacta.2014.04.110

    26. [26]

      SMIRNIOTIS P G, SREEKANTH P M, PEND A, JENKINS R G. Manganese oxide catalysts supported on TiO2, Al2O3, and SiO2:A Comparison for Low-Temperature SCR of NO with NH3[J]. Ind Eng Chem Res, 2006,45(19):6436-6443. doi: 10.1021/ie060484t

    27. [27]

      DONG L, HUANG Y J, CHEN H, LIU L Q, LIU C Q, XU L G, ZHA J R, WANG Y X, LIU H. Magnetic γ-Fe2O3-loaded attapulgite sorbent for Hg0 removal in coal-fired flue gas[J]. Energy Fuels, 2019,33(8):7522-7533. doi: 10.1021/acs.energyfuels.9b01136

    28. [28]

      WU H Y, LI C T, ZHAO L K, ZHANG J, ZENG G M, XIE Y N, ZHANG X N, WANG Y. Removal of gaseous elemental mercury by cylindrical activated coke loaded with CoOx-CeO2 from simulated coal combustion flue gas[J]. Energy Fuels, 2015,29(10):6747-6757. doi: 10.1021/acs.energyfuels.5b00871

    29. [29]

      LIU D J, ZHOU W G, WU J. Effect of Ce and La on the activity of CuO/ZSM-5 and MnOx/ZSM-5 composites for elemental mercury removal at low temperature[J]. Fuel, 2017,194:115-122. doi: 10.1016/j.fuel.2016.12.076

    30. [30]

      YU Xian-qun, BAO Jing-jing, JIANG Xiao-xiang, YANG Hong-min. Performance and mechanism of catalytic oxidation for mercury by Mn-doped TiO2 catalysts in flue gas[J]. Proc CSEE, 2015,35(13):3331-3337.  

    31. [31]

      ZHANG D, HOU L, CHEN G Y, ZHANG A C, WANG F H, WANG R R, LI C W. Cr Doping MnOx adsorbent significantly improving Hg0 removal and SO2 resistance from coal-fired flue gas and the mechanism investigation[J]. Ind Eng Chem Res, 2018,57(50):17245-17258. doi: 10.1021/acs.iecr.8b04857

    32. [32]

      YANG W, LIU Y X, WA NG, PAN J F. Removal of elemental mercury from flue gas using wheat straw chars modified by Mn-Ce mixed oxides with ultrasonic-assisted impregnation[J]. Chem Eng J, 2017,326:169-181. doi: 10.1016/j.cej.2017.05.106

    33. [33]

      SHAN Y, YANG W, LI Y, LIU Y X, PAN J F. Preparation of microwave-activated magnetic bio-char adsorbent and study on removal of elemental mercury from flue gas[J]. Sci Total Environ, 2019,697134049. doi: 10.1016/j.scitotenv.2019.134049

    34. [34]

      ZHANG X P, LI Z F, WANG J X, TAN B J, CUI Y Z, HE G H. Reaction mechanism for the influence of SO2 on Hg0 adsorption and oxidation with Ce0.1-Zr-MnO2[J]. Fuel, 2017,203:308-315. doi: 10.1016/j.fuel.2017.04.065

    35. [35]

      WAN Q, DUAN L, HE K B, LI J H. Removal of gaseous elemental mercury over a CeO2-WO3/TiO2 nanocomposite in simulated coal-fired flue gas[J]. Chem Eng J, 2011,170(2):512-517.  

    36. [36]

      LI Y, MURPHY P D, WU C Y, POWERS K, BONZONGO J J. Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas[J]. Environ Sci Technol, 2008,42(14):5304-5309. doi: 10.1021/es8000272

    37. [37]

      YANG S J, GUO Y F, YAN N Q, WU D Q, HE H P, XIE J K, QU Z, JIA J P. Remarkable effect of the incorporation of titanium on the catalytic activity and SO2 poisoning resistance of magnetic Mn-Fe spinel for elemental mercury capture[J]. Appl Catal B:Environ, 2011,101(3):698-708.  

    38. [38]

      GAO L, LI C T, ZHANG J, DU X Y, LI S H, ZENG J W, YI Y Y, ZENG G M. Simultaneous removal of NO and Hg0 from simulated flue gas over CoOx-CeO2 loaded biomass activated carbon derived from maize straw at low temperatures[J]. Chem Eng J, 2018,342:339-349. doi: 10.1016/j.cej.2018.02.100

    39. [39]

      SHEN B X, ZHU S W, ZHANG X, CHI G L, PATEL D, SI M, WU C F. Simultaneous removal of NO and Hg0 using Fe and Co co-doped Mn-Ce/TiO2 catalysts[J]. Fuel, 2018,224:241-249. doi: 10.1016/j.fuel.2018.03.080

    40. [40]

      ZHANG A C, ZHANG Z H, LU H, LIU Z C, XIANG J, ZHOU C S, XING W B, SUN L S. Effect of promotion with Ru addition on the activity and SO2 resistance of MnOx-TiO2 adsorbent for Hg0 removal[J]. Ind Eng Chem Res, 2015,5(11):2930-2939.  

  • 加载中
    1. [1]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    2. [2]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    3. [3]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    4. [4]

      Xinhao Yan Guoliang Hu Ruixi Chen Hongyu Liu Qizhi Yao Jiao Li Lingling Li . Polyethylene Glycol-Ammonium Sulfate-Nitroso R Salt System for the Separation of Cobalt (II). University Chemistry, 2024, 39(6): 287-294. doi: 10.3866/PKU.DXHX202310073

    5. [5]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    6. [6]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    7. [7]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    8. [8]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    9. [9]

      Tong Zhou Liyi Xie Chuyu Liu Xiyan Zheng Bao Li . Between Sobriety and Intoxication: The Fascinating Journey of Sauce-Flavored Latte. University Chemistry, 2024, 39(9): 55-58. doi: 10.12461/PKU.DXHX202312048

    10. [10]

      Yuyao Wang Zhitao Cao Zeyu Du Xinxin Cao Shuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100035-. doi: 10.3866/PKU.WHXB202406014

    11. [11]

      Qingjun PANZhongliang GONGYuwu ZHONG . Advances in modulation of the excited states of photofunctional iron complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 45-58. doi: 10.11862/CJIC.20240365

    12. [12]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    13. [13]

      Yutao Lu Jing Wu . Rebirth from the Flames: Unveiling the “Chemical Secrets” of Fire Smoke. University Chemistry, 2024, 39(9): 208-213. doi: 10.12461/PKU.DXHX202401001

    14. [14]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    15. [15]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

    16. [16]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    17. [17]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    18. [18]

      Hong CAIJiewen WUJingyun LILixian CHENSiqi XIAODan LI . Synthesis of a zinc-cobalt bimetallic adenine metal-organic framework for the recognition of sulfur-containing amino acids. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 114-122. doi: 10.11862/CJIC.20240382

    19. [19]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    20. [20]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

Metrics
  • PDF Downloads(6)
  • Abstract views(793)
  • HTML views(137)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return