Citation: WEI Yu-liang, GUI Ke-ting, LIU Xiang-xiang, LIANG Hui, GU Shao-chen, REN Dong-dong. Performance of Mn-Ce co-doped siderite catalysts in the selective catalytic reduction of NOx by NH3[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(12): 1495-1503. shu

Performance of Mn-Ce co-doped siderite catalysts in the selective catalytic reduction of NOx by NH3

  • Corresponding author: GUI Ke-ting, ktgui@seu.edu.cn
  • Received Date: 3 September 2019
    Revised Date: 12 November 2019

    Fund Project: the National Natural Science Foundation of China 51276039Environmental Protection Research Project of Jiangsu Province 2015008The project was supported by the National Natural Science Foundation of China (51276039) and Environmental Protection Research Project of Jiangsu Province (2015008)

Figures(10)

  • Siderite, rich in the transition elements, is an idea material to prepare the catalysts for the selective catalytic reduction (SCR) of NOx by NH3. In this work, siderite was doped with Mn and Ce and the performance of Mn-Ce co-doped siderite catalysts in the removal of NOx (de-NOx) by SCR with NH3 was then investigated. The results illustrate that FeCO3 as the main component of siderite can be converted into Fe2O3 by calcination at 450℃. The doping of siderite with Mn and Ce can enhance the surface area and acidity of siderite and reduce the thermal stability of ammonium sulfate formed on the catalyst surface. As a result, the Mn-Ce co-doped siderite catalysts exhibit high efficiency in the de-NOx by SCR and high resistance against sulfur. Over the 3%Mn1%Ce-siderite catalyst, high NOx conversion (>90%) is achieved in the temperature window of 180-300℃; moreover, the NOx conversion remains above 75% even after introducing SO2 for 7.5 h.
  • 加载中
    1. [1]

      BUSCA G, LIETTI L, RAMIS G, BERTI F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review[J]. Appl Catal B: Environ, 1998,18(1/2):1-36.

    2. [2]

      FORZATTI P. Environmental catalysis for stationary applications[J]. Catal Today, 2000,62(1):51-65.

    3. [3]

      YANG S, WANG C, LI J, YAN N, MA L, CHANG H. Low temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel: performance, mechanism and kinetic study[J]. Appl Catal B: Environ, 2011,110:71-80. doi: 10.1016/j.apcatb.2011.08.027

    4. [4]

      LIU F, HE H, ZHANG C, SHAN W, SHI X. Mechanism of the selective catalytic reduction of NOx with NH3 over environmental-friendly iron titanate catalyst[J]. Catal Today, 2010,175(1):18-25.

    5. [5]

      LIU C, YANG S, MA L, PENG Y, HAMIDREZA A, CHANG H, LI J. Comparison on the performance of α-Fe2O3 and γ-Fe2O3 for selective catalytic reduction of nitrogen oxides with ammonia[J]. Catal Lett, 2013,143(7):697-704. doi: 10.1007/s10562-013-1017-3

    6. [6]

      XIE J, FANG D, HE F, CHEN J, FU Z, CHEN X. Performance and mechanism about MnOx species included in MnOx/TiO2 catalysts for SCR at low temperature[J]. Catal Commun, 2012,28:77-81. doi: 10.1016/j.catcom.2012.08.022

    7. [7]

      JIANG B Q, LIU Y, WU Z B. Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods[J]. J Hazard Mater, 2009,162(2/3):1249-1254.  

    8. [8]

      ELLMERS I, VELEZ R P, BENTRUP U, BRUCKNER A, GUNERT W. Oxidation and selective reduction of NO over Fe-ZSM-5-How related are these reactions?[J]. J Catal, 2014,311:199-211. doi: 10.1016/j.jcat.2013.11.024

    9. [9]

      YAO G H, GUI K T, WANG F. Low-temperature De-NOx by selective catalytic reduction based on iron-based catalysts[J]. Chem Eng Technol, 2010,33(7):1093-1098. doi: 10.1002/ceat.201000015

    10. [10]

      WU Z, JIANG B, LIU Y, ZHAO W, GUAN B. Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by so-gel method[J]. J Hazard Mater, 2007,145(3):488-494. doi: 10.1016/j.jhazmat.2006.11.045

    11. [11]

      JIA B, GUO J, LUO H, SHU S, FANG N, LI J. Study of NO removal and resistance to SO2 and H2O of MnOx/TiO2, MnOx/ZrO2 and MnOx/ZrO2-TiO2[J]. Appl Catal A: Gen, 2018,553:82-90. doi: 10.1016/j.apcata.2017.12.016

    12. [12]

      GUO R, LI M, SUN P, PAN W, LIU S, LIU J, SUN X, LIU S. Mechanistic investigation of the promotion effect of Bi modification on the NH3-SCR performance of Ce/TiO2 catalyst[J]. J Phys Chem C, 2017,121(49):27535-27545. doi: 10.1021/acs.jpcc.7b10342

    13. [13]

      XU L, LI X S, CROCKER M, ZHANG Z S, ZHU A M, SHI C. A study of the mechanism of low-temperature SCR of NO with NH3 on MnOx/CeO2[J]. J Mol Catal A: Chem, 2013,378:82-90. doi: 10.1016/j.molcata.2013.05.021

    14. [14]

      ZHAO W, TANG Y, WAN Y, LI L, YAO S, LI X, GU J, LI Y, SHI J. Promotion effects of SiO2 or/and Al2O3 doped CeO2/TiO2 catalysts for selective catalytic reduction of NO by NH3[J]. J Hazard Mater, 2014,278:350-359. doi: 10.1016/j.jhazmat.2014.05.071

    15. [15]

      DU X, WANG X, CHEN Y, GAO X, ZHANG L. Supported mental sulfates on Ce-TiOx as catalysts for NH3-SCR of NO: High resistances to SO2 and potassium[J]. J Ind Eng Chem, 2016,36:271-278. doi: 10.1016/j.jiec.2016.02.013

    16. [16]

      YE D, REN X, QU R, LIU S, ZHENG C, GAO X. Designing SO2-resistant cerium-based catalyst by modifying with Fe2O3 for the selective catalytic reduction of NO with NH3[J]. J Mol Catal, 2019,462:10-18. doi: 10.1016/j.mcat.2018.10.007

    17. [17]

      JIN R, LIU Y, WANG Y, CEN W, WU Z, WANG H, WENG X. The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature[J]. Appl Catal B: Environ, 2014,148/149:582-588. doi: 10.1016/j.apcatb.2013.09.016

    18. [18]

      HUANG L, LI X, HUA J. Effect of Sn doping on denitrification and sulfur resistance performance of Ce-Mn/AC catalyst[J]. Adv Eng Sci, 2019,51(5):185-191.  

    19. [19]

      ZHAO S, LIU L, WANG J, XIONG H. Effect of Fe, Ce and Cu on low temperature denitrification and sulphur resistance of Mn/AC catalysts[J]. Appl Chem Ind, 2019,48(9):2107-2112.

    20. [20]

      WU Y, LIANG H, ZHAO C, CHEN X, CHEN C, DAI C, TANG J. Effect of support on low temperature denitrification performance of Mn-Ce catalysts[J]. Pet Process Petrochem, 2019,50(40):44-48.  

    21. [21]

      ZHANG L, LI L, CAO Y, YAO X, GE C, GAO F, DENG Y, TANG C, DONG L. Getting insight into the influence of SO2 on TiO2/CeO2 for the selective catalytic reduction of NO by NH3[J]. Appl Catal B: Environ, 2015,165:589-598. doi: 10.1016/j.apcatb.2014.10.029

    22. [22]

      JIN R, YUE L, WU Z, WANG H, GU T. Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ce oxides supported on TiO2 and Al2O3: A comparative study[J]. Chemosphere, 2010,78(9):1160-1166. doi: 10.1016/j.chemosphere.2009.11.049

    23. [23]

      XU W, HE H, YU Y. Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3[J]. J Phys Chem C, 2009,113(11):4426-4432. doi: 10.1021/jp8088148

    24. [24]

      WU Z, JIN R, LIU Y, WANG H. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature[J]. Catal Commun, 2008,9(13):2217-2220. doi: 10.1016/j.catcom.2008.05.001

    25. [25]

      KIJLSTRA W S, BIERVLIET M, POELS E K, BLIEK A. Deactivation by SO2 of MnOx/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures[J]. Appl Catal B: Environ, 1998,16(4):327-337. doi: 10.1016/S0926-3373(97)00089-1

    26. [26]

      ZHU Z, NIU H, LIU Z, LIU S. Decomposition and reactivity of NH4HSO4 on V2O5/AC catalysts used for NO reduction with ammonia[J]. J Catal, 2000,195(2):268-278. doi: 10.1006/jcat.2000.2961

  • 加载中
    1. [1]

      Xiaoqiang WangFangyuan ZhouYue LiuZhongbiao Wu . CePO4 supported Cr catalyst with superior sulfur tolerance for selective catalytic oxidation of ammonia. Chinese Chemical Letters, 2025, 36(7): 110420-. doi: 10.1016/j.cclet.2024.110420

    2. [2]

      Chen LianSi-Han ZhaoHai-Lou LiXinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343

    3. [3]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    4. [4]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

    5. [5]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    6. [6]

      Jingtai BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639

    7. [7]

      Haixia WuKailu Guo . Sulfur reduction reaction mechanism elucidated with in situ Raman spectroscopy. Chinese Chemical Letters, 2025, 36(6): 110654-. doi: 10.1016/j.cclet.2024.110654

    8. [8]

      Mingzhu JiangPanqing WangQiheng ChenYue ZhangQi WuLei TanTianxiang NingLingjun LiKangyu Zou . Enabling the Nb/Ti co-doping strategy for improving structure stability and rate capability of Ni-rich cathode. Chinese Chemical Letters, 2025, 36(6): 110040-. doi: 10.1016/j.cclet.2024.110040

    9. [9]

      Jingtao BiYupeng ChengMengmeng SunXiaofu GuoShizhao WangYingying Zhao . Corrigendum to “Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation” [Chinese Chemical Letters 35 (2024) 109639]. Chinese Chemical Letters, 2025, 36(7): 110867-. doi: 10.1016/j.cclet.2025.110867

    10. [10]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    11. [11]

      Na LiWenxue WangPeng WangZhanying SunXinlong TianXiaodong Shi . Dual-defect engineering of catalytic cathode materials for advanced lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110731-. doi: 10.1016/j.cclet.2024.110731

    12. [12]

      Yan WangHuixin ChenFuda YuShanyue WeiJinhui SongQianfeng HeYiming XieMiaoliang HuangCanzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001

    13. [13]

      Han YanJingming YaoZhangran YeQiaoquan LinZiqi ZhangShulin LiDawei SongZhenyu WangChuang YuLong Zhang . Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes. Chinese Chemical Letters, 2025, 36(1): 109568-. doi: 10.1016/j.cclet.2024.109568

    14. [14]

      Qian-Qian TangLi-Fang FengZhi-Peng LiShi-Hao WuLong-Shuai ZhangQing SunMei-Feng WuJian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454

    15. [15]

      Yuxiang Zhang Jia Zhao Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415

    16. [16]

      Lijun YanShiqi ChenPenglu WangXiangyu LiuLupeng HanTingting YanYuejin LiDengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132

    17. [17]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    18. [18]

      Rui PANYuting MENGRuigang XIEDaixiang CHENJiefa SHENShenghu YANJianwu LIUYue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433

    19. [19]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    20. [20]

      Hongyu TangDongming LiuJinfu HuangLiang ZhangYang TangBin HuangYanwei LiShunhua XiaoYiling SunRenheng Wang . Excellent structural stability and electrochemical properties of LiNi0.9Co0.05Mn0.05O2 material by surface Ni2+ anchoring and Cs+ doping. Chinese Chemical Letters, 2025, 36(6): 109987-. doi: 10.1016/j.cclet.2024.109987

Metrics
  • PDF Downloads(7)
  • Abstract views(940)
  • HTML views(81)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return