Performance of Mn-Ce co-doped siderite catalysts in the selective catalytic reduction of NOx by NH3
- Corresponding author: GUI Ke-ting, ktgui@seu.edu.cn
Citation:
WEI Yu-liang, GUI Ke-ting, LIU Xiang-xiang, LIANG Hui, GU Shao-chen, REN Dong-dong. Performance of Mn-Ce co-doped siderite catalysts in the selective catalytic reduction of NOx by NH3[J]. Journal of Fuel Chemistry and Technology,
;2019, 47(12): 1495-1503.
BUSCA G, LIETTI L, RAMIS G, BERTI F. Chemical and mechanistic aspects of the selective catalytic reduction of NOx by ammonia over oxide catalysts: A review[J]. Appl Catal B: Environ, 1998,18(1/2):1-36.
FORZATTI P. Environmental catalysis for stationary applications[J]. Catal Today, 2000,62(1):51-65.
YANG S, WANG C, LI J, YAN N, MA L, CHANG H. Low temperature selective catalytic reduction of NO with NH3 over Mn-Fe spinel: performance, mechanism and kinetic study[J]. Appl Catal B: Environ, 2011,110:71-80. doi: 10.1016/j.apcatb.2011.08.027
LIU F, HE H, ZHANG C, SHAN W, SHI X. Mechanism of the selective catalytic reduction of NOx with NH3 over environmental-friendly iron titanate catalyst[J]. Catal Today, 2010,175(1):18-25.
LIU C, YANG S, MA L, PENG Y, HAMIDREZA A, CHANG H, LI J. Comparison on the performance of α-Fe2O3 and γ-Fe2O3 for selective catalytic reduction of nitrogen oxides with ammonia[J]. Catal Lett, 2013,143(7):697-704. doi: 10.1007/s10562-013-1017-3
XIE J, FANG D, HE F, CHEN J, FU Z, CHEN X. Performance and mechanism about MnOx species included in MnOx/TiO2 catalysts for SCR at low temperature[J]. Catal Commun, 2012,28:77-81. doi: 10.1016/j.catcom.2012.08.022
JIANG B Q, LIU Y, WU Z B. Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods[J]. J Hazard Mater, 2009,162(2/3):1249-1254.
ELLMERS I, VELEZ R P, BENTRUP U, BRUCKNER A, GUNERT W. Oxidation and selective reduction of NO over Fe-ZSM-5-How related are these reactions?[J]. J Catal, 2014,311:199-211. doi: 10.1016/j.jcat.2013.11.024
YAO G H, GUI K T, WANG F. Low-temperature De-NOx by selective catalytic reduction based on iron-based catalysts[J]. Chem Eng Technol, 2010,33(7):1093-1098. doi: 10.1002/ceat.201000015
WU Z, JIANG B, LIU Y, ZHAO W, GUAN B. Experimental study on a low-temperature SCR catalyst based on MnOx/TiO2 prepared by so-gel method[J]. J Hazard Mater, 2007,145(3):488-494. doi: 10.1016/j.jhazmat.2006.11.045
JIA B, GUO J, LUO H, SHU S, FANG N, LI J. Study of NO removal and resistance to SO2 and H2O of MnOx/TiO2, MnOx/ZrO2 and MnOx/ZrO2-TiO2[J]. Appl Catal A: Gen, 2018,553:82-90. doi: 10.1016/j.apcata.2017.12.016
GUO R, LI M, SUN P, PAN W, LIU S, LIU J, SUN X, LIU S. Mechanistic investigation of the promotion effect of Bi modification on the NH3-SCR performance of Ce/TiO2 catalyst[J]. J Phys Chem C, 2017,121(49):27535-27545. doi: 10.1021/acs.jpcc.7b10342
XU L, LI X S, CROCKER M, ZHANG Z S, ZHU A M, SHI C. A study of the mechanism of low-temperature SCR of NO with NH3 on MnOx/CeO2[J]. J Mol Catal A: Chem, 2013,378:82-90. doi: 10.1016/j.molcata.2013.05.021
ZHAO W, TANG Y, WAN Y, LI L, YAO S, LI X, GU J, LI Y, SHI J. Promotion effects of SiO2 or/and Al2O3 doped CeO2/TiO2 catalysts for selective catalytic reduction of NO by NH3[J]. J Hazard Mater, 2014,278:350-359. doi: 10.1016/j.jhazmat.2014.05.071
DU X, WANG X, CHEN Y, GAO X, ZHANG L. Supported mental sulfates on Ce-TiOx as catalysts for NH3-SCR of NO: High resistances to SO2 and potassium[J]. J Ind Eng Chem, 2016,36:271-278. doi: 10.1016/j.jiec.2016.02.013
YE D, REN X, QU R, LIU S, ZHENG C, GAO X. Designing SO2-resistant cerium-based catalyst by modifying with Fe2O3 for the selective catalytic reduction of NO with NH3[J]. J Mol Catal, 2019,462:10-18. doi: 10.1016/j.mcat.2018.10.007
JIN R, LIU Y, WANG Y, CEN W, WU Z, WANG H, WENG X. The role of cerium in the improved SO2 tolerance for NO reduction with NH3 over Mn-Ce/TiO2 catalyst at low temperature[J]. Appl Catal B: Environ, 2014,148/149:582-588. doi: 10.1016/j.apcatb.2013.09.016
HUANG L, LI X, HUA J. Effect of Sn doping on denitrification and sulfur resistance performance of Ce-Mn/AC catalyst[J]. Adv Eng Sci, 2019,51(5):185-191.
ZHAO S, LIU L, WANG J, XIONG H. Effect of Fe, Ce and Cu on low temperature denitrification and sulphur resistance of Mn/AC catalysts[J]. Appl Chem Ind, 2019,48(9):2107-2112.
WU Y, LIANG H, ZHAO C, CHEN X, CHEN C, DAI C, TANG J. Effect of support on low temperature denitrification performance of Mn-Ce catalysts[J]. Pet Process Petrochem, 2019,50(40):44-48.
ZHANG L, LI L, CAO Y, YAO X, GE C, GAO F, DENG Y, TANG C, DONG L. Getting insight into the influence of SO2 on TiO2/CeO2 for the selective catalytic reduction of NO by NH3[J]. Appl Catal B: Environ, 2015,165:589-598. doi: 10.1016/j.apcatb.2014.10.029
JIN R, YUE L, WU Z, WANG H, GU T. Low-temperature selective catalytic reduction of NO with NH3 over Mn-Ce oxides supported on TiO2 and Al2O3: A comparative study[J]. Chemosphere, 2010,78(9):1160-1166. doi: 10.1016/j.chemosphere.2009.11.049
XU W, HE H, YU Y. Deactivation of a Ce/TiO2 catalyst by SO2 in the selective catalytic reduction of NO by NH3[J]. J Phys Chem C, 2009,113(11):4426-4432. doi: 10.1021/jp8088148
WU Z, JIN R, LIU Y, WANG H. Ceria modified MnOx/TiO2 as a superior catalyst for NO reduction with NH3 at low-temperature[J]. Catal Commun, 2008,9(13):2217-2220. doi: 10.1016/j.catcom.2008.05.001
KIJLSTRA W S, BIERVLIET M, POELS E K, BLIEK A. Deactivation by SO2 of MnOx/Al2O3 catalysts used for the selective catalytic reduction of NO with NH3 at low temperatures[J]. Appl Catal B: Environ, 1998,16(4):327-337. doi: 10.1016/S0926-3373(97)00089-1
ZHU Z, NIU H, LIU Z, LIU S. Decomposition and reactivity of NH4HSO4 on V2O5/AC catalysts used for NO reduction with ammonia[J]. J Catal, 2000,195(2):268-278. doi: 10.1006/jcat.2000.2961
Chen Lian , Si-Han Zhao , Hai-Lou Li , Xinhua Cao . A giant Ce-containing poly(tungstobismuthate): Synthesis, structure and catalytic performance for the decontamination of a sulfur mustard simulant. Chinese Chemical Letters, 2024, 35(10): 109343-. doi: 10.1016/j.cclet.2023.109343
Tianbo Jia , Lili Wang , Zhouhao Zhu , Baikang Zhu , Yingtang Zhou , Guoxing Zhu , Mingshan Zhu , Hengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692
Shuqi Yu , Yu Yang , Keisuke Kuroda , Jian Pu , Rui Guo , Li-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130
Shuangxi Li , Huijun Yu , Tianwei Lan , Liyi Shi , Danhong Cheng , Lupeng Han , Dengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240
Jingtai Bi , Yupeng Cheng , Mengmeng Sun , Xiaofu Guo , Shizhao Wang , Yingying Zhao . Efficient and selective photocatalytic nitrite reduction to N2 through CO2 anion radical by eco-friendly tartaric acid activation. Chinese Chemical Letters, 2024, 35(11): 109639-. doi: 10.1016/j.cclet.2024.109639
Haixia Wu , Kailu Guo . Sulfur reduction reaction mechanism elucidated with in situ Raman spectroscopy. Chinese Chemical Letters, 2025, 36(6): 110654-. doi: 10.1016/j.cclet.2024.110654
Mingzhu Jiang , Panqing Wang , Qiheng Chen , Yue Zhang , Qi Wu , Lei Tan , Tianxiang Ning , Lingjun Li , Kangyu Zou . Enabling the Nb/Ti co-doping strategy for improving structure stability and rate capability of Ni-rich cathode. Chinese Chemical Letters, 2025, 36(6): 110040-. doi: 10.1016/j.cclet.2024.110040
Jianmei Han , Peng Wang , Hua Zhang , Ning Song , Xuguang An , Baojuan Xi , Shenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543
Na Li , Wenxue Wang , Peng Wang , Zhanying Sun , Xinlong Tian , Xiaodong Shi . Dual-defect engineering of catalytic cathode materials for advanced lithium-sulfur batteries. Chinese Chemical Letters, 2025, 36(3): 110731-. doi: 10.1016/j.cclet.2024.110731
Yan Wang , Huixin Chen , Fuda Yu , Shanyue Wei , Jinhui Song , Qianfeng He , Yiming Xie , Miaoliang Huang , Canzhong Lu . Oxygen self-doping pyrolyzed polyacrylic acid as sulfur host with physical/chemical adsorption dual function for lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(7): 109001-. doi: 10.1016/j.cclet.2023.109001
Han Yan , Jingming Yao , Zhangran Ye , Qiaoquan Lin , Ziqi Zhang , Shulin Li , Dawei Song , Zhenyu Wang , Chuang Yu , Long Zhang . Al-F co-doping towards enhanced electrolyte-electrodes interface properties for halide and sulfide solid electrolytes. Chinese Chemical Letters, 2025, 36(1): 109568-. doi: 10.1016/j.cclet.2024.109568
Qian-Qian Tang , Li-Fang Feng , Zhi-Peng Li , Shi-Hao Wu , Long-Shuai Zhang , Qing Sun , Mei-Feng Wu , Jian-Ping Zou . Single-atom sites regulation by the second-shell doping for efficient electrochemical CO2 reduction. Chinese Chemical Letters, 2024, 35(9): 109454-. doi: 10.1016/j.cclet.2023.109454
Yuxiang Zhang , Jia Zhao , Sen Lin . Nitrogen doping retrofits the coordination environment of copper single-atom catalysts for deep CO2 reduction. Chinese Journal of Structural Chemistry, 2024, 43(11): 100415-100415. doi: 10.1016/j.cjsc.2024.100415
Lijun Yan , Shiqi Chen , Penglu Wang , Xiangyu Liu , Lupeng Han , Tingting Yan , Yuejin Li , Dengsong Zhang . Hydrothermally stable metal oxide-zeolite composite catalysts for low-temperature NOx reduction with improved N2 selectivity. Chinese Chemical Letters, 2024, 35(6): 109132-. doi: 10.1016/j.cclet.2023.109132
Shanyuan Bi , Jin Zhang , Dengchao Peng , Danhong Cheng , Jianping Zhang , Lupeng Han , Dengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295
Rui PAN , Yuting MENG , Ruigang XIE , Daixiang CHEN , Jiefa SHEN , Shenghu YAN , Jianwu LIU , Yue ZHANG . Selective electrocatalytic reduction of Sn(Ⅳ) by carbon nitrogen materials prepared with different precursors. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 1015-1024. doi: 10.11862/CJIC.20230433
Jinyuan Cui , Tingting Yang , Teng Xu , Jin Lin , Kunlong Liu , Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438
Hongyu Tang , Dongming Liu , Jinfu Huang , Liang Zhang , Yang Tang , Bin Huang , Yanwei Li , Shunhua Xiao , Yiling Sun , Renheng Wang . Excellent structural stability and electrochemical properties of LiNi0.9Co0.05Mn0.05O2 material by surface Ni2+ anchoring and Cs+ doping. Chinese Chemical Letters, 2025, 36(6): 109987-. doi: 10.1016/j.cclet.2024.109987
Yong-Dan Zhao , Yidan Wang , Rongrong Wang , Lina Chen , Hengtong Zuo , Xi Wang , Jihong Qiang , Geng Wang , Qingxia Li , Canqi Ping , Shuqiu Zhang , Hao Wang . Reversing artemisinin resistance by leveraging thermo-responsive nanoplatform to downregulating GSH. Chinese Chemical Letters, 2024, 35(6): 108929-. doi: 10.1016/j.cclet.2023.108929
Yixuan Wang , Jiexin Li , Zhihao Shang , Chengcheng Feng , Jianmin Gu , Maosheng Ye , Ran Zhao , Danna Liu , Jingxin Meng , Shutao Wang . Wettability-driven synergistic resistance of scale and oil on robust superamphiphobic coating. Chinese Chemical Letters, 2024, 35(7): 109623-. doi: 10.1016/j.cclet.2024.109623
■: siderite; ●: 1%Mn-siderite; ▲: 2%Mn-siderite; ▼: 3%Mn-siderite
a: 1%Mn1%Ce-siderite; b: 2%Mn1%Ce-siderite; c: 3%Mn1%Ce-siderite; d: 3%Mn1.5%Ce-siderite; e: 3%Mn0.5%Ce-siderite
a: 3%Mn1%Ce-siderite; b: 3%Mn1.5%Ce-siderite; c: 2%Mn1%Ce-siderite; d: 3%Mn0.5%Ce-siderite; e: 1%Mn1%Ce-siderite