Citation: DAI Xin, BAI Jin, LI Dong-tao, YUAN Ping, YAN Ting-gui, KONG Ling-xue, LI Wen. Experimental and theoretical investigation on relationship between structures of coal ash and its fusibility for Al2O3-SiO2-CaO-FeO system[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(6): 641-648. shu

Experimental and theoretical investigation on relationship between structures of coal ash and its fusibility for Al2O3-SiO2-CaO-FeO system

  • Corresponding author: BAI Jin, stone@sxicc.ac.cn
  • Received Date: 14 January 2019
    Revised Date: 25 March 2019

    Fund Project: The project was supported by Joint Foundation of the Natural Science Foundation of China and Xinjiang Province (U1703252), Joint Foundation of the Natural Science Foundation of China and Shanxi Province (U1510201), NSFC-DFG (21761132032), National Natural Science Foundation of China (21808045) and National Key R & D Program of China (2017YFB0304300 & 2017YFB0304303)Joint Foundation of the Natural Science Foundation of China and Xinjiang Province U1703252National Key R & D Program of China 2017YFB0304300 & 2017YFB0304303NSFC-DFG 21761132032National Natural Science Foundation of China 21808045Joint Foundation of the Natural Science Foundation of China and Shanxi Province U1510201

Figures(9)

  • The molecular dynamics simulation, thermal dynamic calculation and experimental investigation were combined to illustrate ash slag viscosity variation mechanism for Al2O3-SiO2-CaO-FeO system. The viscosity declines and the viscosity curve is transformed from crystalline slag to glassy slag with increasing mass ratio (C/F) of calcium to ferrous oxide in Al2O3-SiO2-CaO-FeO system. There is an inflexion point when the C/F is equal to 2. When the C/F is below 2, there are mainly crystalline minerals in the system. While the C/F is above 2, there are mainly amorphous minerals in the system. With the increase of C/F, six-coordinated Al ([AlO6]9-) is transformed to four coordinated Al([AlO4]5-) microscopically. Besides, the content of bridging oxygen decreases while that of non-bridging oxygen increases. Quantified function between base composition and viscosity are constructed based on the stability coefficients defined by oxygen bond species.
  • 加载中
    1. [1]

      BP Statistical Review of World Energy 2017[R]. BP Public limited company, London, 2017.

    2. [2]

      WANG Fu-chen. Progress on the large-scale and high-efficiency energy entrained flow coal gasification technology[J]. China Basic Sci, 2008,10(3):4-13. doi: 10.3969/j.issn.1009-2412.2008.03.002

    3. [3]

      WANG Fu-chen, YU Guang-suo, GONG Xin, LIU Hai-feng, WANG Yi-fei, LIANG Qin-feng. Research and development of large-scale coal gasification technology[J]. Chem Ind Eng Prog, 2009,28(2):173-180. doi: 10.3321/j.issn:1000-6613.2009.02.001

    4. [4]

      GONG Jing-de. Shell coal gasification technology and its engineering application[J]. Chem Fert Des, 2007,6:8-12+18.  

    5. [5]

      BAI Jin, LI Wen, LI Bao-qing. Mineral behavior in coal under reducing atmosphere at high temperature[J]. J Fuel Chem Technol, 2006,34(3):292-297. doi: 10.3969/j.issn.0253-2409.2006.03.007 

    6. [6]

      LIAO Min, GUO Qing-hua, LIANG QIN-feng, YUAN Hai-ping, NI Jian-jun, YU Guang-suo. Phase transformation of coal ash at high temperature under gasification conditions and its influence on viscosity[J]. Proc CSEE, 2010,30(17):45-50.  

    7. [7]

      CHEN Xiao-dong, KONG Ling-xue, BAI Jin, BAI Zong-qing, LI Wen. Effect of Na2O on mineral transformation of coal ash under high temperature gasificaiton condition[J]. J Fuel Chem Technol, 2006,44(3):263-272.  

    8. [8]

      KONG L X, BAI J, LI W, WEN X D, LI X, BAI Z Q, GUO Z X, LI H Z. The internal and external factor on coal ash slag viscosity at high temperatures, Part 3:Effect of CaO on the pattern of viscosity-temperature curves of slag[J]. Fuel, 2016,179:10-16. doi: 10.1016/j.fuel.2016.03.063

    9. [9]

      KONG L X, BAI J, LI W, WEN X D, LI X, BAI Z Q, GUO Z X, LI H Z. The internal and external factor on coal ash slag viscosity at high temperatures, Part 1:Effect of cooling rate on slag viscosity, measured continuously[J]. Fuel, 2015,158:968-975. doi: 10.1016/j.fuel.2015.02.055

    10. [10]

      KONG L X, BAI J, LI W, WEN X D, LI X, BAI Z Q, GUO Z X, LI H Z. The internal and external factor on coal ash slag viscosity at high temperatures, Part 2:Effect of residual carbon on slag viscosity[J]. Fuel, 2015,158:976-982. doi: 10.1016/j.fuel.2015.06.055

    11. [11]

      XUAN W W, WHITTY K J, GUAN Q L, BI D P, ZHAN Z, ZHANG J S. Influence of CaO on crystallization characteristics of synthetic coal slags[J]. Energy Fuels, 2014,28(10):6627-6634. doi: 10.1021/ef501215u

    12. [12]

      DAI X, BAI J, HUANG Q, LIU Z, BAI X J, CAO R G, WEN X D, LI W, DU S Y. Viscosity temperature properties from molecular dynamics simulation:The role of calcium oxide, sodium oxide and ferrous oxide[J]. Fuel, 2019,237:163-169. doi: 10.1016/j.fuel.2018.09.127

    13. [13]

      WU T, WANG Q, YU C F, HE S P. Structural and viscosity properties of CaO-SiO2-Al2O3-FeO slags based on molecular dynamic simulation[J]. J Non-Cryst Solids, 2016,450:23-31. doi: 10.1016/j.jnoncrysol.2016.07.024

    14. [14]

      LI Jie, DU Mei-fang, YAN Bo, ZHANG Zhong-xiao. Quantum and experimental study on coal ash fusion with borax fluxing agent[J]. J Fuel Chem Technol, 2008,36(5):519-523. doi: 10.3969/j.issn.0253-2409.2008.05.002 

    15. [15]

      CHEN Yu-shuang, ZHANG Zhong-xiao, WU Xiao-jiang, LI Jie, GUAN Rong-qing, YAN Bo. Quantum chemistry calculation and experimental study on coal ash fusion characeristics of blend coal[J]. J Fuel Chem Technol, 2009,37(5):521-526. doi: 10.3969/j.issn.0253-2409.2009.05.002 

    16. [16]

      GUILLOT B, SATOR N. A computer simulation study of natural silicate melts. Part Ⅱ:High pressure properties[J]. Geochim Cosmochim Acta, 2007,71(5):4538-4556.  

    17. [17]

      GUILLOT B, SATOR N. A computer simulation study of natural silicate melts. Part Ⅰ:Low pressure properties[J]. Geochim Cosmochim Acta, 2007,71(5):1249-1265. doi: 10.1016/j.gca.2006.11.015

    18. [18]

      BALE C W, BELISLE E, CHARTRAND P, DE CTEROV S A, ERIKSSON G, GHERIBI A E, HACK K, JUNG I H, KANG Y B, MELANCON J, PELTON A D, PETERSEN S, ROBELIN C, SANGSTER J, SPENCER P, VAN ENDE M A. FactSage thermochemical software and databases, 2010-2016, CALPHAD[J]. 2016, 54: 35-53.

    19. [19]

      BALE C W, BELISLE E, CHARTRAND P, DECTEROV S A, ERIKSSON G, HACK K, JUNG I H, KANG Y B, MELANCON J, PELTON A D, ROBELIN C, PETERSEN S. FactSage thermochemical software and databases-recent developments[J]. Calphad, 2009,33:295-311. doi: 10.1016/j.calphad.2008.09.009

    20. [20]

      BALE C W, CHARTRAND P, BELISLE E, DECTEROV S A, ERIKSSON G, HACK K, MAHFOUD R J, PELTON A D, PETERSEN S. Factsage thermochemical software and databases[J]. Calphad, 2002,26:189-228. doi: 10.1016/S0364-5916(02)00035-4

    21. [21]

      SONG W J, TANG L H, ZHU X D, WU Y Q, ZHU Z B, KOYAMA S. Effect of coal ash composition on ash fusion temperatures[J]. Energy Fuels, 2010,24(1):182-189. doi: 10.1021/ef900537m

  • 加载中
    1. [1]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    2. [2]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    3. [3]

      Chunguang Rong Miaojun Xu Xingde Xiang Song Liu . 化学热力学熵变计算的教学探讨. University Chemistry, 2025, 40(8): 323-329. doi: 10.12461/PKU.DXHX202409146

    4. [4]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    5. [5]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    6. [6]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    7. [7]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    8. [8]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    9. [9]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    10. [10]

      Xiaohui Li Ze Zhang Jingyi Cui Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027

    11. [11]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    12. [12]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    13. [13]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    14. [14]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    15. [15]

      Jiageng Li Putrama . 数值积分耦合非线性最小二乘法一步确定反应动力学参数. University Chemistry, 2025, 40(6): 364-370. doi: 10.12461/PKU.DXHX202407098

    16. [16]

      Ruming Yuan Pingping Wu Laiying Zhang Xiaoming Xu Gang Fu . Patriotic Devotion, Upholding Integrity and Innovation, Wholeheartedly Nurturing the New: The Ideological and Political Design of the Experiment on Determining the Thermodynamic Functions of Chemical Reactions by Electromotive Force Method. University Chemistry, 2024, 39(4): 125-132. doi: 10.3866/PKU.DXHX202311057

    17. [17]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    18. [18]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    19. [19]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    20. [20]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

Metrics
  • PDF Downloads(7)
  • Abstract views(1524)
  • HTML views(149)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return