Citation: LUO Jiang-ze, SHEN Bo-xiong, SHI Qi-qi. A review on the migration and transformation of heavy metals influence by alkali/alkaline earth metals during combustion[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(11): 1318-1326. shu

A review on the migration and transformation of heavy metals influence by alkali/alkaline earth metals during combustion

  • Corresponding author: SHEN Bo-xiong, shenbx@hebeut.edu.cn
  • Received Date: 10 September 2020
    Revised Date: 12 October 2020

    Fund Project: Tianjin Ecological Environment Major Special Project 19ZXSZSN00070the National Key Research & Development Project of China 2018YFB0605101Hebei Province Key Research & Development Program Project 20373701DThe project was supported by the National Key Research & Development Project of China (2018YFB0605101), Hebei Province Key Research & Development Program Project (20373701D), Tianjin Ecological Environment Major Special Project (19ZXSZSN00050, 19ZXSZSN00070)Tianjin Ecological Environment Major Special Project 19ZXSZSN00050

Figures(3)

  • Alkali/alkaline earth metals(AAEMs) are widely present in various solid fuels. During the combustion process, the AAEMs undergo complex physical and chemical reactions with heavy metals and other minerals in the fuel, thereby affecting the migration and transformation of heavy metals. This paper mainly introduced the influence of AAEMs on the migration and transformation of As, Se, Pb and Cr, including the influence of alkali metals and alkaline earth metals on the migration and transformation of heavy metals, and the influence of particle agglomeration and coherence on heavy metal emissions. AAEMs can inhibit the volatilization of heavy metals. The combination of alkali metals and Cl elements reduces the production of PbCl2. The presence of alkali metals is beneficial to improve the adsorption efficiency of kaolin for Pb. AAEMs can form stable compounds with As and Se. However, at the same time, it should be noted that in the partial combination products of AAEMs and Cr, Cr exists in a hexavalent state and has high toxicity. AAEMs play a role in promoting and inhibiting the occurrence of agglomeration, respectively. An appropriate content of alkali metals is beneficial to reduce the release of heavy metals. By summarizing the influence of AAEMs on the migration and transformation of heavy metals, it is hoped to provide ideas for reducing the harm of heavy metals.
  • 加载中
    1. [1]

      GEORGE A, SHEN B X, KANG D R, YANG J C, LUO J Z. Emission control strategies of hazardous trace elements from coal-fired power plants in China[J]. Global J Environ Sci, 2020,93:66-90.  

    2. [2]

      UDAYANGA W D C, VEKSHA A, GIANNIS A, LISAK G, CHANG V W C, LIM T T. Fate and distribution of heavy metals during thermal processing of sewage sludge[J]. Fuel, 2018,226:721-744.  

    3. [3]

      LI W H, SUN Y J, HUANG Y M, SHIMAOKA T, WANG H W, WANG Y N, MA L, ZHANG D L. Evaluation of chemical speciation and environmental risk levels of heavy metals during varied acid corrosion conditions for raw and solidified/stabilized MSWI fly ash[J]. Waste Manag, 2019,87:407-416.  

    4. [4]

      YI H H, HAO J M, DUAN L, TANG X L, NING P, Li X H. Fine particle and trace element emissions from an anthracite coal-fired power plant equipped with a bag-house in China[J]. Fuel, 2008,87:10-11.  

    5. [5]

      EPA-HQ-OAR-2009-0234, National emission standards for hazardous air pollutants from coal-and-oil fired electric utility steam generating units and standards of performance for fossil-fuel-fired electric utility, industrial-commercial-institutional, and small industrial-commercial-institutional steam generating units[S].

    6. [6]

      GB 3095-2012, Ambient air quality standard[S].

    7. [7]

      ZHANG S R, JIANG X G, LV G J, ABULAITI N X, JIN Y Q, YAN J H, LIN X L, SONG H B, CAO J J. Effect of chlorine, sulfur, moisture and ash content on the partitioning of As, Cr, Cu, Mn, Ni and Pb during bituminous coal and pickling sludge co-combustion[J]. Fuel, 2019,239:601-610.  

    8. [8]

      HU H Y, XU Z, LIU H, CHEN D K, LI A J, YAO H, NARUSE I. Mechanism of chromium oxidation by alkali and alkaline earth metals during municipal solid waste incineration[J]. Proc Combust Inst, 2015,35(2):2397-2403.  

    9. [9]

      XU Zhang. The study of a rsenic and selenium occurrence in municipal solid waste incineration fly ash[D]. Wuhan: Huazhong University of Science and Technology, 2016.

    10. [10]

      MOU Wei-peng. Toxicity mechanism of different chemical forms of selenium[J]. Foreign Med, 2001(4):202-205+210.  

    11. [11]

      JIANG Zhi-jian, ZENG Xiao-qiang, CHEN Xiao-ping, LIANG Cai. Heavy metal migration characteristics of fly ash in fluidized bed incinerator for municipal sewage sludge[J]. Therm Energy Power Eng, 2017,32(9):92-98.  

    12. [12]

      LI Yuan, CHEN Juan, ZHANG Pin-gan, YAO Hong. Simultaneous a dsorption of Na and Pb compounds by kaolinite[J]. J Eng Thermophys, 2013,34(1):168-172.  

    13. [13]

      YANG Yi, WANG Dun-dun, CHEN Xun, YAO Bin. Study on comprehensive evaluation of slagging characteristics of high-alkali coal blending combustion from Hami Area[J]. Coal Sci Technol, 2020,48(6):207-213.  

    14. [14]

      YANG Yi, CHEN Chen, CHEN Xun, WANG Dun-dun, YAO Bin. Experimental study on fouling characteristics for blending ratio of high alkali coal in Hami area[J]. Coal Sci Technol, 2019,47(5):214-219.  

    15. [15]

      KARIN L, DAN B, ANDERS N, ANDREI S. Fate of Cu, Cr, and As during combustion of impregnated wood with and without peat additive[J]. Environ Sci Technol, 2007,41(18):6534-6540.  

    16. [16]

      QIN Yue-qiang, CHEN Xue-li, CHEN Han-ding, LIU Hai-feng. Effects of adding CaO on the release and transformation of arsenic and sulfur during coal pyrolysis[J]. J Fuel Chem Technol, 2017,45(2):147-156. doi: 10.3969/j.issn.0253-2409.2017.02.003 

    17. [17]

      LI Yao-de, YANG Dong, ZHOU Xi-hong, DONG Le, WANG Si-yang. Study on competition mechanism of alkali metals and heavy metals in collaborative combustion of sludge and alkali coal[J]. Chin J Power Eng, 2020,40(5):349-355+364.  

    18. [18]

      MEI Yan-gang, WANG Zhi-qing, GAO Song-ping, ZHENG Hong-yan, ZHANG Yun, FANG Yi-tian. Research progress of the influence of alkali metals and alkaline earth metals on coal thermal chemical conversion[J]. J Fuel Chem Technol, 2020,48(4):385-394. doi: 10.3969/j.issn.0253-2409.2020.04.001 

    19. [19]

      WENDT J O L, LEE S J. High-temperature sorbents for Hg, Cd, Pb, and other trace metals: Mech Appl[J]. Fuel, 2009,89(4):894-903.  

    20. [20]

      LIU J Y, FU J W, NING X A, SUN S Y, WANG Y J, XIE W M, HUANG S S, ZHONG S. An experimental and thermodynamic equilibrium investigation of the Pb, Zn, Cr, Cu, Mn and Ni partitioning during sewage sludge incineration[J]. J Environ Sci, 2015,35(9):43-54.  

    21. [21]

      WANG X Y, HUANG Y J, NIU M M, WANG Y X, LIU C Q. Effect of multi-factors interaction on trace lead equilibrium during municipal solid waste incineration[J]. J Mater Cycles Waste Manage, 2016,18(2):287-295.  

    22. [22]

      WANG K S, CHIANG K Y, LIN S M, TSAI C C, SUN C J. Effects of chlorides on emissions of toxic compounds in waste incineration: Study on partitioning characteristics of heavy metal[J]. Chemosphere, 1999,38(8):1833-1849.  

    23. [23]

      YU Wan-xuan, DIAO Yong-fa, SHEN Heng. Thermodynamics study of effects of alkali metals on mercury transformation during co-combustion of biomass with coal[J]. Chin Soc Electr Eng, 2012,32(26):96-102+153.  

    24. [24]

      YAO Jia-bin. Effects of sodium compounds on nitrogen oxides and mercury releasing during coal combustion[D]. Beijing: North China Electric Power University, 2016.

    25. [25]

      WEI X L, SCHNELL U, HEIN K R G. Behaviour of gaseous chlorine and alkali metals during biomass thermal utilisation[J]. Fuel, 2005,84(7):841-848.  

    26. [26]

      LIN C L, WEY M Y, YU W J. Emission characteristics of organic and heavy metal pollutants in fluidized bed incineration during the agglomeration/defluidization process[J]. Combust Flame, 2005,143(3):139-149.  

    27. [27]

      CHEN T, LEI C, YAN B, LI L L. Analysis of heavy metals fixation and associated energy consumption during sewage sludge combustion: Bench scale and pilot test[J]. J Cleaner Prod, 2019,229:1243-1250.  

    28. [28]

      WANG X Y, HUANG Y J, ZHONG Z P, YAN Y P, NIU M M, WANG Y X. Control of inhalable particulate lead emission from incinerator using kaolin in two addition modes[J]. Fuel Process Technol, 2014,119:228-235.  

    29. [29]

      SI J P, LIU X W, XU M H, SHENG L, ZHOU Z J, WANG C, ZHANG Y, SEO Y C. Effect of kaolin additive on PM 2.5 reduction during pulverized coal combustion: Importance of sodium and its occurrence in coal[J]. Appl Energy, 2014,114:434-444.  

    30. [30]

      YAO H, NARUSE I. Using sorbents to control heavy metals and particulate matter emission during solid fuel combustion[J]. Particuology, 2009,7(6):477-482.  

    31. [31]

      GALE T K, WENDT L O L. High-temperature interactions between multiple-metals and kaolinite[J]. Combust Flame, 2003,133(3):383-383.  

    32. [32]

      GALE T K, WENDT L O L. In-furnace capture of cadmium and other semi-volatile metals by sorbents[J]. Proc Combust Inst, 2005,30(2):2999-3007.  

    33. [33]

      DAVIS S B, GALE T K, WENDT L O L. Competition for sodium and toxic metals capture on sorbents[J]. Aerosol Sci Technol, 2000,32(2):142-151.  

    34. [34]

      JAGODZINSKA K, MROCZEK K, NOWINSKA K, GOLOMBEK K, KALISZ S. The impact of additives on the retention of heavy metals in the bottom ash during RDF incineration[J]. Energy, 2019,183:854-868.  

    35. [35]

      CONTRERAS M L, AROSTEGUI J M, ARMESTO L. Arsenic interactions during co-combustion processes based on thermodynamic equilibrium calculations[J]. Fuel, 2008,88(3):539-546.  

    36. [36]

      ZHOU C C, LIU G J, XU Z Y, SUN H, LAM P K S. Retention mechanisms of ash compositions on toxic elements (Sb, Se and Pb) during fluidized bed combustion[J]. Fuel, 2018,213:98-105.  

    37. [37]

      ZHOU C C, LIU G J, XU Z Y, SUN H, LAM P K S. Effect of ash composition on the partitioning of arsenic during fluidized bed combustion[J]. Fuel, 2017,204:91-97.  

    38. [38]

      ZHAO Yun. Influences of alkali metals on heavy metals migration and competition in sewa ge sludge[D]. Shenyang: Shenyang University of Aeronautics and Astronautics, 2012.

    39. [39]

      CHEN D K, HU H Y, XU Z, LIU H, CAO J X, SHEN J H, YAO H. Findings of proper temperatures for arsenic capture by CaO in the simulated flue gas with and without SO2[J]. Chem Eng J, 2015,267:201-206.  

    40. [40]

      LI Y Z, TONG H L, ZHUO Y Q, LI Y, XU X C. Simultaneous removal of SO2 and trace As2O3 from flue gas: Mechanism, kinetics study, and effect of main gases on arsenic capture[J]. Environ Sci Technol, 2007,41(8)2894.  

    41. [41]

      JADHAV R A, FAN L S. Capture of gas-phase arsenic oxide by lime: kinetic and mechanistic studies[J]. Environ Sci Technol, 2001,35(4):794-799.  

    42. [42]

      DIAZ S M, MARTINEZ T M R. Retention of arsenic and selenium compounds using limestone in a coal gasification flue gas[J]. Environ Sci Technol, 2004,38(3):899-903.  

    43. [43]

      SONG B, SONG M, CHEN D D, CAO Y, MENG F Y, WEI Y X. Retention of arsenic in coal combustion flue gas at high temperature in the presence of CaO[J]. Fuel, 2020,259116249.  

    44. [44]

      XU S R, SHUAI Q, HUANG Y J, BAO Z Y, HU S H. Se capture by a CaO-ZnO composite sorbent during the combustion of Se-rich stone coal[J]. Energy Fuels, 2013,27:6880-6886.  

    45. [45]

      FAN Y M, ZHUO Y Q, LOU Y, ZHU Z W, LI L L. SeO2 adsorption on CaO surface: DFT study on the adsorption of a single SeO2 molecule[J]. Appl Surf Sci, 2017,413:366-371.  

    46. [46]

      FAN Y M, ZHUO Y Q, LI L L. SeO2 adsorption on CaO surface: DFT and experimental study on the adsorption of multiple SeO2 molecules[J]. Appl Surf Sci, 2017,420:465-471.  

    47. [47]

      LI Y Z, TONG H L, ZHUO Y Q, CHEN C H, XU X C. Simultaneous removal of SO2 and trace SeO2 from flue gas: effect of product layer on mass transfer[J]. Environ Sci Technol, 2006,40(13)4306.  

    48. [48]

      LI Y Z, TONG H L, ZHUO Y Q, WANG S J, XU X C. Simultaneous removal of SO2 and trace SeO2 from flue gas: effect of SO2 on selenium capture and kinetics study[J]. Environ Sci Technol, 2006,40(24):7919-7924.  

    49. [49]

      KUO J H, LIN C L, WEY M Y. Effect of particle agglomeration on heavy metals adsorption by Al- and Ca-based sorbents during fluidized bed incineration[J]. Fuel Process Technol, 2011,92(10):2089-2098.  

    50. [50]

      CHEN J, JIAO F C, ZHANG L, YAO H, NINOMIYA Y. Elucidating the mechanism of Cr(Ⅵ) formation upon the interaction with metal oxides during coal oxy-fuel combustion[J]. J Hazard Mater, 2013,261:260-268.  

    51. [51]

      HU H Y, SHI M Y, YANG Y H, LIU H, XU M, SHEN J H, YAO H. Further insight into the formation and oxidation of CaCr2O4 during solid fuel combustion[J]. Environ Sci Technol, 2018,52(4):2385-2391.  

    52. [52]

      YAO H, MKILAHA I S N, NARUSE I. Screening of sorbents and capture of lead and cadmium compounds during sewage sludge combustion[J]. Fuel, 2003,83(7):1001-1007.  

    53. [53]

      ZHA J R, HUANG Y J, XIA W Q, XIA Z P, LIU C Q, DONG L, LIU L Q. Effect of mineral reaction between calcium and aluminosilicate on heavy metal behavior during sludge incineration[J]. Fuel, 2018,229:241-247.  

    54. [54]

      ZHOU H, SUN J, MENG A H, LI Q H, ZHANG Y G. Effects of sorbents on the partitioning and speciation of Cu during municipal solid waste incineration[J]. Chin J Chem Eng, 2014,22(11/12):1347-1351.  

    55. [55]

      CHEN L M, LIAO Y F, MA X Q. Heavy metals volatilization characteristics and risk evaluation of co-combusted municipal solid wastes and sewage sludge without and with calcium-based sorbents[J]. Ecotoxicol Environ Saf, 2019,182109370.  

    56. [56]

      BARTONOVA L, KLIKA Z. Effect of CaO on retention of S, Cl, Br, As, Mn, V, Cr, Ni, Cu, Zn, W and Pb in bottom ashes from fluidized-bed coal combustion power station[J]. J Environ Sci, 2014,26(7):1429-1436.  

    57. [57]

      ZHA J R, HUANG Y J, CLOUGH P T, DONG L, XU L G, LIU L Q, ZHU Z C, YU M Z. Desulfurization using limestone during sludge incineration in a fluidized bed furnace: Increased risk of particulate matter and heavy metal emissions[J]. Fuel, 2020,273117614.  

    58. [58]

      LOPES M H, ABELHA P, OLIVEIRA J F S, CABRITA I, GULYURTLU I. Heavy Metals Behavior during Monocombustion and Co-Combustion of Sewage Sludge[J]. Environ Eng Sci, 2005,22(2):205-220.  

    59. [59]

      GUO Jia-hong, LIN Kun-sen, XIONG Kun, LIN Qiu-liang, LIU Jing-yong. Effect of alkalic metal on the combustion characteristics, agglomeration/defluidization and heavy metals emission during fluidized bed municipal solid waste (MSW) incineration[J]. Environ Eng, 2018,36(5):132-138.  

    60. [60]

      GAO Z F, LONG H M, DAI B, GAO X P. Investigation of reducing particulate matter (PM) and heavy metals pollutions by adding a novel additive from metallurgical dust (MD) during coal combustion[J]. J Hazard Mater, 2019,373:335-346.  

    61. [61]

      KUO J H, LIN C L, WEY M Y. Effects of agglomeration processes on the emission characteristics of heavy metals under different waste compositions and the addition of Al and Ca inhibitors in fluidized bed incineration[J]. Energy Fuels, 2009.  

    62. [62]

      ZHAO S L, DUAN Y F, LI Y N, LIU M, LU J H, DING Y J, GU X B, TAO J, DU M S. Emission characteristic and transformation mechanism of hazardous trace elements in a coal-fired power plant[J]. Fuel, 2018,214:597-606.  

  • 加载中
    1. [1]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    2. [2]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    3. [3]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    4. [4]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    5. [5]

      Zuozhong Liang Lingling Wei Yiwen Cao Yunhan Wei Haimei Shi Haoquan Zheng Shengli Gao . Exploring the Development of Undergraduate Scientific Research Ability in Basic Course Instruction: A Case Study of Alkali and Alkaline Earth Metal Complexes in Inorganic Chemistry. University Chemistry, 2024, 39(7): 247-263. doi: 10.3866/PKU.DXHX202310103

    6. [6]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    7. [7]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    10. [10]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    11. [11]

      Zitong Chen Zipei Su Jiangfeng Qian . Aromatic Alkali Metal Reagents: Structures, Properties and Applications. University Chemistry, 2024, 39(8): 149-162. doi: 10.3866/PKU.DXHX202311054

    12. [12]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    13. [13]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    14. [14]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    15. [15]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    16. [16]

      Yingran Liang Fei WangJiabao Sun Hongtao Zheng Zhenli Zhu . Construction and Application of a New Experimental Device for Determination of Alkaline Metal Elements by Plasma Atomic Emission Spectrometry Based on Solution Cathode Glow Discharge: An Alternative Approach for Fundamental Teaching Experiments in Emission Spectroscopy. University Chemistry, 2024, 39(5): 380-387. doi: 10.3866/PKU.DXHX202312024

    17. [17]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    18. [18]

      Guimin ZHANGWenjuan MAWenqiang DINGZhengyi FU . Synthesis and catalytic properties of hollow AgPd bimetallic nanospheres. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 963-971. doi: 10.11862/CJIC.20230293

    19. [19]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    20. [20]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

Metrics
  • PDF Downloads(8)
  • Abstract views(1143)
  • HTML views(243)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return