Citation: Su Bo, Wang Zhenquan, Dong Hui, He Nan, Yang Ningke, Saikat Ghosh. Preparation and Application of Fe3S4 Nanoparticles[J]. Chemistry, ;2020, 83(10): 897-908. shu

Preparation and Application of Fe3S4 Nanoparticles

  • Corresponding author: Saikat Ghosh, sghosh12@qq.com
  • Received Date: 15 May 2020
    Accepted Date: 15 June 2020

Figures(8)

  • In recent years, Fe3S4 magnetic nanoparticles have displayed huge potential in environmental treatment, energy storage, catalysts and biomedical application etc. due to its unique physicochemical properties such as quantum size effect, electromagnetism characteristic. In this review, the methods for preparing Fe3S4 nanoparticles, mainly including precipitation method, hydrothermal method (solvothermal method), thermal decomposition method and template method, and the advantages/disadvantages of various methods are summarized. Then the application of Fe3S4 nanomaterials in environmental governance, energy storage, biomedicine, etc. are introduced. Finally, some problems in the preparation of Fe3S4 nanomaterials are analyzed, and their development direction is prospected.
  • 加载中
    1. [1]

      Hutchison J E. ACS Nano, 2008, 2(3): 395-402. 

    2. [2]

      Sharma V K, Yngard R A, Lin Y. J. Colloid Interf. Sci., 2009, 145: 83-96. 

    3. [3]

      Xi C, Zeng Y, Rui X, et al. ACS Nano, 2012, 6: 4713-4721. 

    4. [4]

      Devey A J, Grau-Crespo R, de Leeuw N H. Phys. Rev. B, 2009, 79: 195126. 

    5. [5]

      Skinner B J, Erd R C, Grimaldi F S. Am. Mineral., 1964, 46: 543-555.

    6. [6]

      Spender M R, Coey J M D, Morrish A H. Can. J. Phy., 1972, 50(19): 2313-2326. 

    7. [7]

      Gibbs G V, Cox D F, Rosso K M, et al. J. Phys. Chem. B, 2007, 111(8): 1923-1931. 

    8. [8]

      Chang L, Rainford B D, Stewart J R, et al. J. Geophys. Res. Atmos., 2009, 114: B07101.

    9. [9]

      Roberts A P, Chang L, Rowan C J, et al. Rev. Geophys., 2011, 49: RG1002.

    10. [10]

      Muxworthy A R, Williams W, Roberts A P, et al. Geochem. Geophys. Geosy., 2013, 14: 5430-5441. 

    11. [11]

      Chang L, Roberts A P, Tang Y, et al. J. Geophys. Res. Earth, 2008, 113: B06104.

    12. [12]

      Li P, Xia C, Zhang Q, et al. J. Appl. Phys., 2015, 117: 223903. 

    13. [13]

      Zhang B, de Wijs G A, de Groot R A. Phys. Rev. B, 2012, 86(2): 020406. 

    14. [14]

      Wang J, Cao S H, Wu W, et al. Phys. Scripta, 2011, 83: 045702. 

    15. [15]

      Roldan A, Santos-Carballal D, de Leeuw N H. J. Chem. Phys., 2013, 138: 204712. 

    16. [16]

      Moore J, Nienhuis E, Ahmadzadeh M, et al. AIP Adv., 2019, 9: 035012. 

    17. [17]

      Goodenough J B. Mater. Res. Bull., 1978, 13: 1305-1314. 

    18. [18]

      Chang Y S, Savitha S, Sadhasivam S, et al. J. Colloid Interf. Sci., 2011, 363: 314-319. 

    19. [19]

      Simeonidis K, Liebana-Vinas S, Wiedwald U, et al. RSC Adv., 2016, 6: 53107-53117. 

    20. [20]

      Liu J C, Guo X, Zhao Z, et al. Appl. Mater. Today, 2020, 18: 100457. 

    21. [21]

      Liu X G, Feng C, Bi N N, et al. Ceram. Int., 2014, 40: 9917. 

    22. [22]

      He Q G, Huang C Y, Liu J. Nanosci. Nanotechnol., 2014, 6(1): 10-17.

    23. [23]

      Feng M, Lu Y, Yang Y, et al. Sci. Rep., 2013, 3: 2994. 

    24. [24]

      Hao Z W, Wei P K, Kang H Z, et al. J. Electro. Chem., 2019, 850: 113436. 

    25. [25]

      Zhang Z J, Chen X Y. J. Alloys Compd., 2009, 488: 339-345. 

    26. [26]

      Wang X B, Cai W P, Wang G Z, et al. CrysEngComm, 2013, 15: 2956. 

    27. [27]

      Luo J L, Hu Y B, Xiao L, et al. Nanotechnology, 2020, 31: 085708. 

    28. [28]

      Cao F, Hu W, Zhou L, et al. Dalton Transac., 2009, 42: 9246-9252.

    29. [29]

      Liu Q, Chen Z Z, Qin R, et al. Electrochim. Acta, 2019, 304: 405-414. 

    30. [30]

      Beal J H L, Prabakar S, Gaston N, et al. Chem. Mater., 2011, 23: 2514-2517. 

    31. [31]

      Vanitha P V, O'Brien P. J. Am. Chem. Soc., 2008, 130: 17256. 

    32. [32]

      Que L, Holm R H, Mortenson L E. J. Am. Chem. Soc., 1975, 97(2): 463-464. 

    33. [33]

      Beal J H L, Etchegoin P G, Tilley R D. J. Phys. Chem. C, 2010, 114: 3817-3821. 

    34. [34]

      Ramli E Rauchfuss T B, Stern C L. J. Am. Chem. Soc., 1990, 112(10): 4043-4044. 

    35. [35]

      Rauchfuss T B. Inorg. Chem., 2004, 43: 14-26. 

    36. [36]

      Beal J H L, Etchegoin P G, Tilley R D. J. Solid State Chem., 2012, 189: 57-62. 

    37. [37]

      Vasilenko I V, Cador O, Ouahab L, et al. Theor. Exp. Chem., 2010, 46: 322-327. 

    38. [38]

      Oh S M, Henderickson D N, Hassett K L, et al. J. Am. Chem. Soc., 1985, 107: 8009-8018. 

    39. [39]

      Zhang Y J, Du Y P, Xu H R, et al. CrystEngComm, 2010, 12: 3658-3663. 

    40. [40]

      Chen X, Wang Z, Wang X, et al. Inorg. Chem., 2005, 44(4): 951-954. 

    41. [41]

      Han W, Gao M Y. Cryst. Growth Des., 2008, 8: 1023-1030. 

    42. [42]

      Mlowe S, Osman N S E, Moyo T, et al. Mater. Chem. Phys., 2017, 198: 167-176. 

    43. [43]

      Li T T, Li H H, Wu Z N, et al. Nanoscale, 2015, 7: 4171-4178. 

    44. [44]

      Pattrick R A D, Coker V S, Akhtar M, et al. Mineral Mag., 2017, 81: 857-872. 

    45. [45]

      Yang S, Zhang C H, Cai Y Q, et al. J. Alloys Compd., 2018, 735: 1955-1961. 

    46. [46]

      Zheng J, Cao Y, Cheng C, et al. J. Mater. Chem. A, 2014, 2: 19882-19888. 

    47. [47]

      Paolella A, George C, Povia M, et al. Chem. Mater., 2011, 23: 3762-3768. 

    48. [48]

      Lyubutin I S, Starchikov S S, Lin C R, et al. J. Nanopart. Res., 2013, 15: 1397. 

    49. [49]

      Zhu Y Z, Yun X Y, Wu S L, et al. Ionics, 2020, 26: 105-113. 

    50. [50]

      Liao T Q, Wang W, Song Y L, et al. J. Mater. Sci. Technol., 2015, 31: 895-900.

    51. [51]

      Zhu M Y, Diao G W. Nanoscale, 2011, 3(7): 2748-2767. 

    52. [52]

      Gautam R K, Tiwari I. Chemosphere, 2020, 245: 125553. 

    53. [53]

      Wang X B, Liu J, Xu W Z. Colloid. Surf. A, 2012, 415: 288-294. 

    54. [54]

      Mendez A, Fernandez F, Gasco G. Desalination, 2007, 206: 147-153. 

    55. [55]

      Edwin V A. Eur. J. Chem., 2008, 5: 844-852.

    56. [56]

      Ma L J, Wang Q, Islam S M, et al. J. Am. Chem. Soc., 2016, 138: 2858-2866. 

    57. [57]

      Peng Q M, Guo J X, Zhang Q R, et al. J. Am. Chem. Soc., 2014, 136: 4113-4116. 

    58. [58]

      Chandra V, Park J, Chun Y, et al. ACS Nano, 2010, 4: 3979-3986. 

    59. [59]

      Jiang W J, Cai Q, Wu W, et al. Environ. Sci. Technol., 2014, 48: 8078-8085. 

    60. [60]

      Fu Y, Wang J Y, Liu Q, et al. Carbon, 2014, 77: 710-721. 

    61. [61]

      Jiang W, Wang W F, Pan B C, et al. ACS Appl. Mater. Interf., 2014, 6: 3421-3426. 

    62. [62]

      Zhang C, Sui J H, Li J, et al. Chem. Eng. J., 2012, 210: 45-52. 

    63. [63]

      Li G L, Zhao Z S, Liu J Y, et al. J. Hazard. Mater., 2011, 192: 277-283.

    64. [64]

      Li B Y, Zhang Y M, Ma D X, et al. Nat. Commun., 2014, 5: 5537. 

    65. [65]

      Shao D, Ren X, Wen J, et al. J. Hazard. Mater., 2016, 302: 1-9. 

    66. [66]

      Hoon Y J, Bjorn K, Joel D B, et al. Environ. Sci. Technol., 2007, 41: 7699-7705. 

    67. [67]

      Liu W, Jin L D, Xu J, et al. Chem. Eng. J., 2019, 359: 564-571. 

    68. [68]

      Yang S Y, Li Q, Chen L, et al. Chem. Eng. J., 2020, 385: 123909. 

    69. [69]

      Wang X D, Xu J, Liu J, et al. Sci. Total Environ., 2020, 700: 134414. 

    70. [70]

      Zhou Y X, Zhao Y T, Wu X G, et al. RSC Adv., 2018, 8: 31568. 

    71. [71]

      Kong L, Li Z C, Huang X Q, et al. J. Mater. Chem. A, 2017, 5: 19333. 

    72. [72]

      Kong L, Yan L L, Qu Z, et al. J. Mater. Chem. A, 20153: 15755-15763. 

    73. [73]

      Islam M, Patel R. Separat. Sci. Technol., 2017, 52: 2835-2852.

    74. [74]

      Liu W, Ai Z H, Dahlgren R A, et al. Chem. Eng. J., 2017, 330: 1232-1239. 

    75. [75]

      Na L, Fu F, Lu J, et al. Environ. Pollut., 2017, 220: 1376-1385. 

    76. [76]

      Yantasee W, Warner C L, Sangvanich T, et al. Environ. Sci. Technol., 200741: 5114-5119. 

    77. [77]

      Jia X L, Chen Z, Cui X, et al. ACS Nano, 2012, 6: 9911-9919. 

    78. [78]

      Li X Y, Fu N Q, Zou J Z, et al. Electrochim. Acta, 2017, 225: 137-142. 

    79. [79]

      Park A R, Jeon K J, Park C M. Electrochim. Acta, 2018, 265: 107-114. 

    80. [80]

      Zhang L, Lu L, Zhang D C, et al. Electrochim. Acta, 2016, 209: 423-429. 

    81. [81]

      Bracamonte M V, Primo E N, Luque G L, et al. Electrochim. Acta, 2017, 258: 192-199. 

    82. [82]

      Lu Y, Yu L, Lou X W. Chem, 2018, 4: 972-996. 

    83. [83]

      Zhang R P, Wang Y, Jia M Q, et al. Appl. Surf. Sci., 2018, 437: 375-383. 

    84. [84]

      Yin L X, Chai S M, Huang J F, et al. Electrochim. Acta, 2017, 238: 168-177. 

    85. [85]

      Dunn B, Kamath H, Tarascon J M. Science, 2011, 334: 928-935. 

    86. [86]

      Rui X, Tan H, Yan Q. Nanoscale, 2014, 6: 9889-9924. 

    87. [87]

      Xia X, Zhang Y, Chao D, et al. Nanoscale, 2014, 6: 5008-5048. 

    88. [88]

      Li G W, Zhang B M, Yu F, et al. Chem. Mater., 2014, 26: 5821-5829. 

    89. [89]

      Li H J, Su Q M, Kang J W, et al. Mater. Res. Bull., 2018, 108: 106-112. 

    90. [90]

      Li J C, Ma Z, Chi Y, et al. J. Mater. Sci., 2017, 52: 1573-1580. 

    91. [91]

      Guo S P, Li J C, Ma Z, et al. J. Mater. Sci., 2017, 52: 2345-2355. 

    92. [92]

      Li J C, Xue H G, Guo S P. Funct. Mater. Lett., 2017, 10: 1750054. 

    93. [93]

      Guo S P, Li J C, Xiao J R, et al. ACS Appl. Mater. Interf., 2017, 9: 37694-37701. 

    94. [94]

      Xu Q T, Li J C, Xue H G, et al. J. Power Sources, 2018, 396: 675-682. 

    95. [95]

      Li Q D, Wei Q L, Zuo W B, et al. Chem. Sci., 2017, 8: 160-164. 

    96. [96]

      Zhang W, Cheng Y, Han D, et al. Energy, 2015, 93: 625-630. 

    97. [97]

      Zheng J, Cao Y, Fu J R, et al. J. Alloy Compd., 2016, 668: 27-32. 

    98. [98]

      Zhang Q, Mwizerwa J P, Wan H L, et al. J. Mater. Chem. A, 2017, 5: 23919. 

    99. [99]

      Sharma S K, Shrivastava N, Rossi F, et al. Nano Today, 2019, 29: 100795. 

    100. [100]

      Rivas J, Bañobre L M, Piñeiro R Y, et al. J. Mag. Mag. Mater., 2012, 324: 3499-3502. 

    101. [101]

      Mehran M, Kordbacheh A A, Ghobadi A, et al. Comput. Bio. Med., 2020, 120: 103741. 

    102. [102]

      Dutz S, Hergt R. Int. J. Hyperther., 2013, 29: 790-800. 

    103. [103]

      Krishnan K M. IEEE Trans. Mag., 2010, 7: 2523-2558.

    104. [104]

      Hergt R, Andra W, d'Ambly C G, et al. IEEE Trans. Mag., 1998, 34: 3745. 

    105. [105]

      Oh J, Yoon H, Park J H. Bio. Eng. Lett., 2013, 3: 67-73. 

    106. [106]

      Jain P K, Huang X, El-Sayed I H, et al. Plasmonics, 2007, 3: 107-118.

    107. [107]

      Robinson R, Gerlach W, Ghandehari H. J. Control. Release, 2015, 220: 245-252. 

    108. [108]

      Gong F, Hong Y Z, Papavassiliou D V, et al. Nanotechonlogy, 2014, 20: 205101.

    109. [109]

      Sadat M E, Baghbador M K, Dumn A W, et al. Appl. Phys. Lett., 2014, 9: 091903.

    110. [110]

      Moroz P, Jones S K, Gray B N. Int. J. Hyperthermia, 2002, 18: 267-284. 

    111. [111]

      Wang J Q, Liu G. Angew. Chem. Int. Ed., 2018, 57: 3008-3010. 

    112. [112]

      Choi H S, Liu W H, Misra P, et al. Nat. Biotechnol., 2007, 25: 1165-1170. 

    113. [113]

      Guan G Q, Wang X, Li B, et al. Nanoscale, 2018, 10: 17902. 

    114. [114]

      Choe Y J, Byun J Y, Kim S H, et al. Appl. Catal. B, 2018, 233: 272-280. 

    115. [115]

      Ding C P, Yan Y H, Xiang D S, et al. Mikrochim. Acta, 2016, 183: 625-631. 

    116. [116]

      Lin X L, Shih K M, Chen J H, et al. Chem. Eng. J., 2019, 391: 1385-8947.

    117. [117]

      Sharifvaghefi S, Zheng Y. Can. J. Chem. Eng., 2018, 96: 231-240. 

    118. [118]

      Wu H J, Liu J L, Liang H S, et al. Chem. Eng. J., 2020, 393: 124743. 

    119. [119]

      Huang S X, Kang D, Wu X, et al. Sci. Rep., 2017, 7: 46334. 

  • 加载中
    1. [1]

      Zunyuan Xie Lijin Yang Zixiao Wan Xiaoyu Liu Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137

    2. [2]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    3. [3]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    6. [6]

      Wenjun Zheng . Application in Inorganic Synthesis of Ionic Liquids. University Chemistry, 2024, 39(8): 163-168. doi: 10.3866/PKU.DXHX202401020

    7. [7]

      Shasha SUNWeichun HUANGMengke WANG . Research progress of interface regulation strategies and applications of two‑dimensional MXenes. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1465-1482. doi: 10.11862/CJIC.20240430

    8. [8]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    9. [9]

      Yuanyuan JIANGFangfang TUYuhong ZHANGShi CHENJiayuan XIANGXinhui XIA . Preparation and electrochemical properties of high-stability cathode prelithiation additive. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1101-1111. doi: 10.11862/CJIC.20240441

    10. [10]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    11. [11]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    12. [12]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    13. [13]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    14. [14]

      Nana Wang Gaosheng Zhang Huosheng Li Tangfu Xiao . Discussion on the Teaching Reform of Environmental Functional Materials within the Context of “Double First-Class” Initiative: Emphasizing the Integration of Industry, Academia, Research, and Application. University Chemistry, 2024, 39(6): 137-144. doi: 10.3866/PKU.DXHX202312010

    15. [15]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    16. [16]

      Jianan Zhang Mengzhen Xu Jiamin Liu Yufei He . 面向“双碳”目标的脱氯吸附剂开发研究型综合实验设计. University Chemistry, 2025, 40(6): 248-255. doi: 10.12461/PKU.DXHX202408068

    17. [17]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    18. [18]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    19. [19]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    20. [20]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

Metrics
  • PDF Downloads(21)
  • Abstract views(1326)
  • HTML views(397)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return