Citation: Lv Jubo, Zhang Yahui, Liu Gang, Xu Hui. Amplification Detection of Adenosine-Triphosphate Based on Hybrid Chain Reaction and Auxiliary Magnetic Sensing Strategy[J]. Chemistry, ;2018, 81(1): 59-64, 76. shu

Amplification Detection of Adenosine-Triphosphate Based on Hybrid Chain Reaction and Auxiliary Magnetic Sensing Strategy

  • Received Date: 23 August 2017
    Accepted Date: 31 October 2017

Figures(7)

  • We put forward a hybrid chain reaction amplification detection of adenosine triphosphate (ATP) based on auxiliary magnetic sensing strategy. The surface of magnetic nanoparticles is easy to be modified, and they have the advantages of the convenient operation, the good separation effect and the higher selectivity for biological sensing. First of all, the biotin labeled ATP aptamer will connect to the surface of the magnetic nanoparticles which is modified with streptavidin based on the affinity between biotin and streptavidin. Then a single DNA which is complementary to the ATP aptamer is added to hybrid with ATP aptamer, and the unnecessary DNA will be removed by magnetic separation. When the targeted ATP is added to the solution, the ATP will bind with its aptamer specially by releasing the complementary single-stranded DNA, and the complementary single-stranded DNA will continue to be used for the next step of hybridization chain reaction. The signal would be stronger after magnetic separation. The background will be reduced by the fluorescence quenching effect of the graphene oxide, and the method has high sensitivity and high selectivity for targeting ATP. The lowest detection concentration of ATP is 0.1nmol/L.
  • 加载中
    1. [1]

      C Mukai, M Okuno. Biol. Reprod., 2004, 71(2):540~547. 

    2. [2]

      M Iwata, K T Ota, X Y Li et al. Biol. Psychiat., 2016, 80(1):12~22. 

    3. [3]

       

    4. [4]

      S Zhang, J Xia, X Li. Anal. Chem., 2008, 80(22):8382~8388. 

    5. [5]

      J Zhou, H Huang, J Xuan et al. Biosens. Bioelectron., 2010, 26(2):834~840. 

    6. [6]

       

    7. [7]

      J Wang, J Lu, S Su et al. Biosens. Bioelectron., 2015, 65(65):171~175.

    8. [8]

      Y Mao, T Fan, R Gysbers et al. Talanta, 2017, 168:279~285. 

    9. [9]

      J Sun, J Wei, J Zhu et al. Biosens. Bioelectron., 2015, 70:15~20. 

    10. [10]

      Q Song, M Peng, L Wang et al. Biosens. Bioelectron., 2016, 77(3):237~241.

    11. [11]

      W Yao, L Wang, H Wang et al. Biosens. Bioelectron., 2009, 24(11):3269~3274. 

    12. [12]

      J Lu, M Yan, L Ge et al. Biosens. Bioelectron., 2013, 47(5):271~277.

    13. [13]

      X Zeng, X Zhang, W Yang et al. Anal. Biochem., 2012, 424(1):8~11. 

    14. [14]

      L Chen, J Chao, X Qu et al. ACS Appl. Mater. Interf., 2017, 9(9):8014~8020. 

    15. [15]

      X Qu, H Zhang, H Chen et al. Anal. Chem., 2017, 89(6):3468~3473. 

    16. [16]

      X Qu, S Wang, Z Ge et al. J. Am. Chem. Soc., 2017, 139(30):10176~10179. 

    17. [17]

      H Pei, L Liang, G Yao et al. Angew. Chem., 2012, 51(36):9020~9024. 

    18. [18]

      R M Dirks, N A Pierce. PNAS, 2004, 101(43):15275~15278. 

    19. [19]

      Z Li, X Miao, K Xing et al. Biosens. Bioelectron., 2016, 80:339~343. 

    20. [20]

      C Jie, Z Li, L Jing et al. Biosens. Bioelectron., 2016, 81:92~96. 

    21. [21]

      J Guo, J Wang, J Zhao et al. ACS Appl. Mater. Interf., 2016, 8(11):6898~6904. 

    22. [22]

      X Lv, W Wu, C Niu et al. Talanta, 2016, 151:62~67. 

    23. [23]

      J Wang, L Wang, X Liu et al. Adv. Mater., 2007, 19(22):3943~3946. 

    24. [24]

      L Kong, J Xu, Y Xu et al. Biosens. Bioelectron., 2013, 42(1):193~197.

    25. [25]

      J Wang, Y Jiang, C Zhou et al. Anal. Chem., 2005, 77(11):3542~3546. 

    26. [26]

      C Lin, Y Chen, Z Cai et al. Biosens. Bioelectron., 2015, 63:562~565. 

    27. [27]

      W Song, Z Zhu, Y Mao et al. Biosens. Bioelectron., 2014, 53(53):288~294.

    28. [28]

      X He, Z Li, X Jia et al. Talanta, 2013, 111(13):105~110.

    29. [29]

      J M Liu, X P Yan. Biosens. Bioelectron., 2012, 36(1):135~141. 

    30. [30]

      S Cheng, B Zheng, M Wang et al. Talanta, 2013, 115(17):506~511.

    31. [31]

      L Lu, Y Qian, L Wang et al. ACS Appl. Mater. Interf., 2014, 6(3):1944~1950. 

    32. [32]

      N Liu, Y Jiang, Y Zhou et al. Angew. Chem., 2013, 125(7):2061~2065. 

  • 加载中
    1. [1]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    2. [2]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    3. [3]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    4. [4]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    5. [5]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    6. [6]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    7. [7]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    8. [8]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    9. [9]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    10. [10]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    11. [11]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    12. [12]

      Siyu HOUWeiyao LIJiadong LIUFei WANGWensi LIUJing YANGYing ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469

    13. [13]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    14. [14]

      Mi Wen Baoshuo Jia Yongqi Chai Tong Wang Jianbo Liu Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147

    15. [15]

      Zhenlin Zhou Siyuan Chen Yi Liu Chengguo Hu Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049

    16. [16]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    17. [17]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    18. [18]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    19. [19]

      Hao BAIWeizhi JIJinyan CHENHongji LIMingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001

    20. [20]

      Tingbo Wang Yao Luo Bingyan Hu Ruiyuan Liu Jing Miao Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082

Metrics
  • PDF Downloads(5)
  • Abstract views(2629)
  • HTML views(311)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return