Citation:
Lv Jubo, Zhang Yahui, Liu Gang, Xu Hui. Amplification Detection of Adenosine-Triphosphate Based on Hybrid Chain Reaction and Auxiliary Magnetic Sensing Strategy[J]. Chemistry,
;2018, 81(1): 59-64, 76.
-
We put forward a hybrid chain reaction amplification detection of adenosine triphosphate (ATP) based on auxiliary magnetic sensing strategy. The surface of magnetic nanoparticles is easy to be modified, and they have the advantages of the convenient operation, the good separation effect and the higher selectivity for biological sensing. First of all, the biotin labeled ATP aptamer will connect to the surface of the magnetic nanoparticles which is modified with streptavidin based on the affinity between biotin and streptavidin. Then a single DNA which is complementary to the ATP aptamer is added to hybrid with ATP aptamer, and the unnecessary DNA will be removed by magnetic separation. When the targeted ATP is added to the solution, the ATP will bind with its aptamer specially by releasing the complementary single-stranded DNA, and the complementary single-stranded DNA will continue to be used for the next step of hybridization chain reaction. The signal would be stronger after magnetic separation. The background will be reduced by the fluorescence quenching effect of the graphene oxide, and the method has high sensitivity and high selectivity for targeting ATP. The lowest detection concentration of ATP is 0.1nmol/L.
-
-
- [1]
-
[2]
M Iwata, K T Ota, X Y Li et al. Biol. Psychiat., 2016, 80(1):12~22.
- [3]
- [4]
-
[5]
J Zhou, H Huang, J Xuan et al. Biosens. Bioelectron., 2010, 26(2):834~840.
- [6]
-
[7]
J Wang, J Lu, S Su et al. Biosens. Bioelectron., 2015, 65(65):171~175.
- [8]
-
[9]
J Sun, J Wei, J Zhu et al. Biosens. Bioelectron., 2015, 70:15~20.
-
[10]
Q Song, M Peng, L Wang et al. Biosens. Bioelectron., 2016, 77(3):237~241.
-
[11]
W Yao, L Wang, H Wang et al. Biosens. Bioelectron., 2009, 24(11):3269~3274.
-
[12]
J Lu, M Yan, L Ge et al. Biosens. Bioelectron., 2013, 47(5):271~277.
-
[13]
X Zeng, X Zhang, W Yang et al. Anal. Biochem., 2012, 424(1):8~11.
-
[14]
L Chen, J Chao, X Qu et al. ACS Appl. Mater. Interf., 2017, 9(9):8014~8020.
-
[15]
X Qu, H Zhang, H Chen et al. Anal. Chem., 2017, 89(6):3468~3473.
-
[16]
X Qu, S Wang, Z Ge et al. J. Am. Chem. Soc., 2017, 139(30):10176~10179.
-
[17]
H Pei, L Liang, G Yao et al. Angew. Chem., 2012, 51(36):9020~9024.
- [18]
-
[19]
Z Li, X Miao, K Xing et al. Biosens. Bioelectron., 2016, 80:339~343.
-
[20]
C Jie, Z Li, L Jing et al. Biosens. Bioelectron., 2016, 81:92~96.
-
[21]
J Guo, J Wang, J Zhao et al. ACS Appl. Mater. Interf., 2016, 8(11):6898~6904.
- [22]
-
[23]
J Wang, L Wang, X Liu et al. Adv. Mater., 2007, 19(22):3943~3946.
-
[24]
L Kong, J Xu, Y Xu et al. Biosens. Bioelectron., 2013, 42(1):193~197.
-
[25]
J Wang, Y Jiang, C Zhou et al. Anal. Chem., 2005, 77(11):3542~3546.
-
[26]
C Lin, Y Chen, Z Cai et al. Biosens. Bioelectron., 2015, 63:562~565.
-
[27]
W Song, Z Zhu, Y Mao et al. Biosens. Bioelectron., 2014, 53(53):288~294.
-
[28]
X He, Z Li, X Jia et al. Talanta, 2013, 111(13):105~110.
-
[29]
J M Liu, X P Yan. Biosens. Bioelectron., 2012, 36(1):135~141.
-
[30]
S Cheng, B Zheng, M Wang et al. Talanta, 2013, 115(17):506~511.
-
[31]
L Lu, Y Qian, L Wang et al. ACS Appl. Mater. Interf., 2014, 6(3):1944~1950.
-
[32]
N Liu, Y Jiang, Y Zhou et al. Angew. Chem., 2013, 125(7):2061~2065.
-
-
-
[1]
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
-
[2]
Zeyu XU , Anlei DANG , Bihua DENG , Xiaoxin ZUO , Yu LU , Ping YANG , Wenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099
-
[3]
Yue Zhang , Bao Li , Lixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038
-
[4]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[5]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[6]
Siyi ZHONG , Xiaowen LIN , Jiaxin LIU , Ruyi WANG , Tao LIANG , Zhengfeng DENG , Ao ZHONG , Cuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093
-
[7]
Chaolin Mi , Yuying Qin , Xinli Huang , Yijie Luo , Zhiwei Zhang , Chengxiang Wang , Yuanchang Shi , Longwei Yin , Rutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011
-
[8]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[9]
Lisha LEI , Wei YONG , Yiting CHENG , Yibo WANG , Wenchao HUANG , Junhuan ZHAO , Zhongjie ZHAI , Yangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202
-
[10]
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
-
[11]
Meiran Li , Yingjie Song , Xin Wan , Yang Li , Yiqi Luo , Yeheng He , Bowen Xia , Hua Zhou , Mingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007
-
[12]
Siyu HOU , Weiyao LI , Jiadong LIU , Fei WANG , Wensi LIU , Jing YANG , Ying ZHANG . Preparation and catalytic performance of magnetic nano iron oxide by oxidation co-precipitation method. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1577-1582. doi: 10.11862/CJIC.20230469
-
[13]
Anbang Du , Yuanfan Wang , Zhihong Wei , Dongxu Zhang , Li Li , Weiqing Yang , Qianlu Sun , Lili Zhao , Weigao Xu , Yuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027
-
[14]
Mi Wen , Baoshuo Jia , Yongqi Chai , Tong Wang , Jianbo Liu , Hailong Wu . Improvement of Fluorescence Quantitative Analysis Experiment: Simultaneous Determination of Rhodamine 6G and Rhodamine 123 in Food Using Chemometrics-Assisted Three-Dimensional Fluorescence Method. University Chemistry, 2025, 40(4): 390-398. doi: 10.12461/PKU.DXHX202405147
-
[15]
Zhenlin Zhou , Siyuan Chen , Yi Liu , Chengguo Hu , Faqiong Zhao . A New Program of Voltammetry Experiment Teaching Based on Laser-Scribed Graphene Electrode. University Chemistry, 2024, 39(2): 358-370. doi: 10.3866/PKU.DXHX202308049
-
[16]
Tianqi Bai , Kun Huang , Fachen Liu , Ruochen Shi , Wencai Ren , Songfeng Pei , Peng Gao , Zhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024
-
[17]
Jiahao Lu , Xin Ming , Yingjun Liu , Yuanyuan Hao , Peijuan Zhang , Songhan Shi , Yi Mao , Yue Yu , Shengying Cai , Zhen Xu , Chao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045
-
[18]
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
-
[19]
Hao BAI , Weizhi JI , Jinyan CHEN , Hongji LI , Mingji LI . Preparation of Cu2O/Cu-vertical graphene microelectrode and detection of uric acid/electroencephalogram. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1309-1319. doi: 10.11862/CJIC.20240001
-
[20]
Tingbo Wang , Yao Luo , Bingyan Hu , Ruiyuan Liu , Jing Miao , Huizhe Lu . Quantitative Computational Study on the Claisen Rearrangement Reaction of Allyl Phenyl Ethers: An Introduction to a Computational Chemistry Experiment. University Chemistry, 2024, 39(11): 278-285. doi: 10.12461/PKU.DXHX202403082
-
[1]
Metrics
- PDF Downloads(5)
- Abstract views(2629)
- HTML views(311)