Citation: Dai Yuanzhe, Tang Bo, Li Xufei, Zhang Zhenyu. Research Progress in Phase Change Heat Storage Materials[J]. Chemistry, ;2019, 82(8): 717-724, 730. shu

Research Progress in Phase Change Heat Storage Materials

  • Received Date: 13 March 2019
    Accepted Date: 21 May 2019

Figures(5)

  • Thermal storage phase change materials (PCM, constant temperature latent heat energy storage materials) are receiving more and more attention because of their high performances. The energy storage is achieved in the corresponding system during the phase change process of the PCM, this can alleviate the mismatch of heat in time, intensity and location. The advantages of PCM include the good stability and the high heat storage capacity. These materials are environmentally friendly, which is in line with the country's energy conservation and environmental protection policies, and the efficiency of the corresponding systems is greatly enhanced by using the PCM. The types, characteristics and latest developments of various PCM are introduced, and the future development are also discussed.
  • 加载中
    1. [1]

       

    2. [2]

      A Abhat. Sol. Energy, 1983, 30(4):313~332. 

    3. [3]

      L Miró, J Gasia, L F Cabeza. Appl. Energy, 2016, 179:284~301. 

    4. [4]

      M A Wahid, S E Hosseini, H M Hussen et al. Appl. Therm. Eng., 2017, 112(5):1240~1259. 

    5. [5]

      M K A Sharif, A A A Abidi, S Mat et al. Renew. Sustain. Energy Rev., 2015, 42:557~568. 

    6. [6]

       

    7. [7]

      J W Raade, D Padowitz. J. Sol. Energy Eng., 2011, 133(3):91~96.

    8. [8]

      D Mantha, T Wang, R G Reddy. J. Phase Equilib. Diffus., 2012, 33(2):110~114. 

    9. [9]

      F Xu, J T Wang, X M Zhu et al. New J. Chem., 2017, 41(18):10376~10382. 

    10. [10]

      J W Liu, Q H Wang, Z Y Ling et al. Sol. Energy Mater. Sol. Cells, 2017, 169:280~286. 

    11. [11]

      Y Y Zhang, J Q Wu, W L Wang et al. Int. J. Heat Mass Transf., 2019, 129:397~405. 

    12. [12]

      X Chen, Y T Wu, L D Zhang et al. Sol. Energy Mater. Sol. Cells, 2019, 191:209~217. 

    13. [13]

      R Pilar, L Svoboda, P Honcova et al. Thermochim. Acta, 2012, 546:81~86. 

    14. [14]

      Y S Liu, Y Z Yang. Appl. Therm. Eng., 2017, 112:606~609. 

    15. [15]

      N Kumar, D Banerjee, R C Jr. J. Energy Storage, 2018, 20:153~162. 

    16. [16]

      Y Li, H Lin, S M A S Hejazi et al. Constr. Build. Mater., 2017, 149:272~278. 

    17. [17]

      N Xie, J M Luo, Z P Li et al. Sol. Energy Mater. Sol. Cells, 2019, 189:33~42. 

    18. [18]

      F Xiong, A D Liao, D Estrada et al. Science, 2011, 332(6029):568~570. 

    19. [19]

      R E Simpson, P Fons, A V Kolobov et al. Nat. Nanotechnol., 2011, 6(8):501~505. 

    20. [20]

      M K Santala, B W Reed, T Topuria et al. J. Appl. Phys., 2012, 111(2):024309. 

    21. [21]

      W Y Zhou, L C Wu, X L Zhou et al. Appl. Phys. Lett., 2014, 105(24):243113. 

    22. [22]

      R R Liu, X Zhou, J W Zhai et al. ACS Appl. Mater. Interf., 2017, 9(32):27004~27013. 

    23. [23]

      S Salyan, S Suresh. Int. J. Hydrogen Energy, 2018, 43(4):2469~2483. 

    24. [24]

      B Buonomo, D Ercole, O Manca et al. Energy Procedia, 2018, 148:1175~1182. 

    25. [25]

      A I Fernández, C Barreneche, M Belusko et al. Sol. Energy Mater. Sol. Cells., 2017, 171:275~281. 

    26. [26]

      J Eftekhar, A H Sheikh, D Y S Lou. J. Sol. Energy Eng., 1984, 106(3):299~306. 

    27. [27]

      S Abishek, A J C King, N Nadim et al. Int. J. Heat Mass Transf., 2018, 127:135~144. 

    28. [28]

      I Krupa, P Sobolčiak, H Abdelrazeq et al. Polym. Test., 2017, 63:567~572. 

    29. [29]

      Y A Zhang, L J Wang, B T Tang et al. Appl. Energy, 2016, 184:241~246. 

    30. [30]

      P Chaiyasat, M Z Islam, A Chaiyasat. RSC Adv., 2013, 3(26):10202~10207. 

    31. [31]

      Z T Li, Y X Wu, B S Zhuang et al. Appl. Energy, 2017, 206:1147~1157. 

    32. [32]

      Z C Qian, H Shen, X Fang et al. Energy Build., 2018, 158:1184~1188. 

    33. [33]

      Y Lu, X D Xiao, J Fu et al. Chem. Eng. J., 2019, 355:532~539. 

    34. [34]

      L J Wang, D Meng. Appl. Energy, 2010, 87(8):2660~2665. 

    35. [35]

      K Cellat, F Tezcan, B Beyhan et al. Constr. Build. Mater., 2017, 143:490~500. 

    36. [36]

      W Si, X Y Zhou, B Ma et al. Constr. Build. Mater., 2015, 98(15):547~558. 

    37. [37]

      B J Manning, P R Bender, S A Cote et al. Sustain. Cities Soc., 2015, 19:11~16. 

    38. [38]

      B Ma, J Ma, D L Wang et al. Appl. Mech. Mater., 2011, 71~78:118~121. 

    39. [39]

      W B Kong, Z M Liu, Y Y Yang et al. Constr. Build. Mater., 2017, 152:568~575. 

    40. [40]

      R A Mitran, D Berger, C Matei. Thermochim. Acta, 2018, 660:70~76. 

    41. [41]

      P Lu, W S Chen, J J Fan et al. ACS Sustain. Chem. Eng., 2018, 6(2):2656~2666. 

    42. [42]

      Y X Lin, C Q Zhu, G Alva et al. Appl. Energy, 2018, 228:1801~1809. 

    43. [43]

      A B Rezaie, M Montazer. Appl. Energy, 2018, 228:1911~1920. 

    44. [44]

      G R Dheep, A Sreekumar. Appl. Therm. Eng., 2018, 129:1189~1196. 

    45. [45]

      X Huang, Y X Lin, G Alva et al. Sol. Energy Mater. Sol. Cells, 2017, 170:68~76. 

    46. [46]

      L H He, H Wang, F Yang et al. Thermochim. Acta, 2018, 665:43~52. 

    47. [47]

      V Pethurajan, S Sivan, A J Konatt et al. Sol. Energy Mater. Sol. Cells, 2018, 185:524~535. 

    48. [48]

      M M Kenisarin. Sol. Energy, 2014, 107:553~575. 

    49. [49]

      A Solé, H Neumann, S Niedermaier. Sol. Energy Mater. Sol. Cells, 2014, 126:125~134. 

    50. [50]

      M Kenisarin, K Mahkamov. Renew. Sustain. Energy Rev., 2007, 11(9):1913~1965. 

    51. [51]

      K Nakano, Y Masuda, H Daiguji. J. Phys. Chem. C, 2015, 119(7):4769~4777.

    52. [52]

      M Duquesne, A Godin, E P D Barrio et al. Energy Procedia, 2017, 139:315~321. 

    53. [53]

      S N Gunasekara, J Stalin, M Marçal et al. Energy Procedia, 2017, 135:249~262. 

    54. [54]

      T T Qian, J H Li, X Min et al. J. Mater. Chem. A, 2015, 3(16):8526~8536. 

    55. [55]

      S Sundararajan, A B Samui, P S Kulkarni. J. Mater. Chem. A, 2017, 5(35):18379~18396. 

    56. [56]

      J T McCann, M Marquez, Y Xia. Nano Lett., 2006, 6(12):2868~2872. 

    57. [57]

      X Y Huang, W Xia, R Q Zou. J. Mater. Chem. A, 2014, 2(47), 19963~19968. 

    58. [58]

      C Z Liu, Z H Rao, J T Zhao et al. Nano Energy, 2015, 13:814~826. 

    59. [59]

      M Graham, J A C Clemente, E Shchukina et al. J. Mater. Chem. A, 2017, 5(26):13683~13691. 

    60. [60]

      N Sheng, C Y Zhu, G Saito et al. J. Mater. Chem. A, 2018, 6(37):18143~18153. 

    61. [61]

      D Wu, W Wen, S Chen et al. J. Mater. Chem. A, 2015, 3(6):2589~2600. 

    62. [62]

      Y Luan, M Yang, Q Q Ma et al. J. Mater. Chem. A, 2016, 4(20):7641~7649. 

  • 加载中
    1. [1]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    2. [2]

      Yan XinYunnian GeZezhong LiQiaobao ZhangHuajun Tian . Research Progress on Modification Strategies of Organic Electrode Materials for Energy Storage Batteries. Acta Physico-Chimica Sinica, 2024, 40(2): 2303060-0. doi: 10.3866/PKU.WHXB202303060

    3. [3]

      Wenjie SHIFan LUMengwei CHENJin WANGYingfeng HAN . Synthesis and host-guest properties of imidazolium-functionalized zirconium metal-organic cage. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 105-113. doi: 10.11862/CJIC.20240360

    4. [4]

      Yuanpei ZHANGJiahong WANGJinming HUANGZhi HU . Preparation of magnetic mesoporous carbon loaded nano zero-valent iron for removal of Cr(Ⅲ) organic complexes from high-salt wastewater. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1731-1742. doi: 10.11862/CJIC.20240077

    5. [5]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    6. [6]

      Xinran Zhang Siqi Liu Yichi Chen Qingli Zou Qinghong Xu Yaqin Huang . From Protein to Energy Storage Materials: Edible Gelatin Jelly Electrolyte. University Chemistry, 2025, 40(7): 255-266. doi: 10.12461/PKU.DXHX202408104

    7. [7]

      Ruonan LiShijie LiangYunhua XuCuifen ZhangZheng TangBaiqiao LiuWeiwei Li . Chlorine-Substituted Double-Cable Conjugated Polymers with Near-Infrared Absorption for Low Energy Loss Single-Component Organic Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(8): 2307037-0. doi: 10.3866/PKU.WHXB202307037

    8. [8]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    9. [9]

      Wen LUOLin JINPalanisamy KannanJinle HOUPeng HUOJinzhong YAOPeng WANG . Preparation of high-performance supercapacitor based on bimetallic high nuclearity titanium-oxo-cluster based electrodes. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 782-790. doi: 10.11862/CJIC.20230418

    10. [10]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    11. [11]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    12. [12]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    13. [13]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    14. [14]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    15. [15]

      Junli Liu . Practice and Exploration of Research-Oriented Classroom Teaching in the Integration of Science and Education: a Case Study on the Synthesis of Sub-Nanometer Metal Oxide Materials and Their Application in Battery Energy Storage. University Chemistry, 2024, 39(10): 249-254. doi: 10.12461/PKU.DXHX202404023

    16. [16]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    17. [17]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    18. [18]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    19. [19]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    20. [20]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

Metrics
  • PDF Downloads(23)
  • Abstract views(1963)
  • HTML views(719)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return