Citation: YANG Hao, LI Hui-gu, XIE Xing-yue, WANG Qiao, DUAN Yi-ping, HUANG Li-hong. Layered double hydroxide-derived catalyst of Zn-Ni-Al-Fe-O for hydrogen production via auto-thermal reforming of acetic acid[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(11): 1352-1358. shu

Layered double hydroxide-derived catalyst of Zn-Ni-Al-Fe-O for hydrogen production via auto-thermal reforming of acetic acid

  • Corresponding author: LI Hui-gu, 584045893@qq.com HUANG Li-hong, huanglihong06@cdut.cn
  • Received Date: 20 June 2018
    Revised Date: 7 August 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (21276031) and the International Cooperation Program Sponsored by the S & T Department of Sichuan Province of China (2015HH0013)the International Cooperation Program Sponsored by the S & T Department of Sichuan Province of China 2015HH0013the National Natural Science Foundation of China 21276031

Figures(7)

  • Zn2.4Ni0.6AlxFe1-xO4.5±δ catalysts were prepared by co-precipitation, tested in auto-thermal reforming (ATR) of HAc, and characterized by XRD, H2-TPR, BET and XPS. The result showed that the Zn2.4Ni0.6Al0.5Fe0.5O4.5±δ catalyst presented a better performance in ATR of HAc. The HAc conversion and hydrogen yield remained at 100% and 2.39 mol-H2/mol-HAc, respectively. The characterization results indicated that the better performance can be attributed to the addition of Fe, which was helpful to increase surface area and formation of FeNiZn alloy after reduction, while resistance to oxidation and coking was improved as well.
  • 加载中
    1. [1]

      ZENG G M, LIU Q H, GU R X, ZHANG L H, LI Y D. Synergy effect of MgO and ZnO in a Ni/Mg-Zn-Al catalyst during ethanol steam reforming for H2-rich gas production[J]. Catal Today, 2011,178(1):206-213. doi: 10.1016/j.cattod.2011.07.036

    2. [2]

      FENG M H, LIU J D, ZHANG F B, HUANG L H. Ni-based olivine-type catalysts and their application in hydrogen production via auto-thermal reforming of acetic acid[J]. Chem Paper, 2015,69(9).  

    3. [3]

      HUANG L H, ZHANG F B, WANG N, CHEN R R, HSU A T. Nickel-based perovskite catalysts with iron-doping via self-combustion for hydrogen production in auto-thermal reforming of ethanol[J]. Int J Hydro Energy, 2012,37(2):1272-1279. doi: 10.1016/j.ijhydene.2011.10.005

    4. [4]

      ZHONG X Y, XIE W, WANG N, DUAN Y P, SHANG R S, HUANG L H. Dolomite-derived Ni-based catalysts with Fe modification for hydrogen production via auto-thermal reforming of acetic acid[J]. Catal, 2016,6(6)85. doi: 10.3390/catal6060085

    5. [5]

      HUANG L H, ZHONG X Y, DUAN Y P, XIE W, CHEN R R. Precious metal-promoted Ni-Mg-Al-Fe-O catalyst for hydrogen production with fast startup via catalytic partial oxidation of butanol[J]. Int J Hydrogen Energy, 2015,40(4):1717-1725.  

    6. [6]

      ZHANG F B, LI M, YANG L, YE S Z, HUANG L H. Ni-Mg-Mn-Fe-O catalyst derived from layered double hydroxide for hydrogen production by auto-thermal reforming of ethanol[J]. Catal Commun, 2014,43:6-10. doi: 10.1016/j.catcom.2013.08.024

    7. [7]

      HUANG L H, LIU Q, CHEN R R, HSU A T. Hydrogen production via auto-thermal reforming of bio-ethanol:The role of iron in layered double hydroxide-derived Ni0.35Mg2.65AlO4.5±δ catalysts[J]. Appl Catal A:Gen, 2011,393(1/2):302-308.

    8. [8]

      LI Shu-na, SHI Qi, LI Xiao-jun, FANG Zhen-hua, SUN Ping, ZHOU Yue-hua, ZHANG Xing-mei, YANG Xiao-hui. Low temperature CO oxidation over the ceria oxide catalysts doped with Fe, Ni and Cu[J]. J Fuel Chem Technol, 2017,45(6):707-713. doi: 10.3969/j.issn.0253-2409.2017.06.009 

    9. [9]

      ZHAO X F, ZHANG F Z, XU S L, EVANS D G, DUAN X. From layered double hydroxides to ZnO-based mixed metal oxides by thermal decomposition:Transformation mechanism and UV-blocking properties of the product[J]. Chem Mater, 2010,22(13):3933-3942. doi: 10.1021/cm100383d

    10. [10]

      JOSEPH W B, PAUL S B. Layered double hydroxide stability. 1. Relative stabilities of layered double hydroxides and their simple counterparts[J]. Chem Mater, 1999,11:298-302. doi: 10.1021/cm980523u

    11. [11]

      LI X R, ZHANG C, CHENG H Y, HE L M, LIN W W, YU Y C, ZHAO F Y. Effect of Zn doping on the hydrogenolysis of glycerol over ZnNiAl catalyst[J]. J Mol Catal A:Chem, 2014,395:1-6. doi: 10.1016/j.molcata.2014.07.021

    12. [12]

      HUANG L H, XIE J, CHEN R R, CHU D, HSU A T. Fe promoted Ni-Ce/Al2O3 in auto-thermal reforming of ethanol for hydrogen production[J]. Catal Lett, 2009,130(3/4):432-439.  

    13. [13]

      BOLSHAK E, ABELLÓ S, MONTANÉ D. Ethanol steam reforming over Ni-Fe-based hydrotalcites:Effect of iron content and reaction temperature[J]. Int J Hydroger Energy, 2013,38(14):5594-5604. doi: 10.1016/j.ijhydene.2013.02.077

    14. [14]

      WANG D F, ZHANG X L, GAO Y Y, XIAO F K, WEI W, SUN Y H. Synthesis of dimethyl carbonate from methyl carbamate and methanol over lanthanum compounds[J]. Fuel Process Technol, 2010,91(9):1081-1086. doi: 10.1016/j.fuproc.2010.03.017

    15. [15]

      CHEN G Y, XU N G, LI X P, LIU Q L, YANG H J, LI W Q. Hydrogen production by aqueous-phase reforming of ethylene glycol over a Ni/Zn/Al derived hydrotalcite catalyst[J]. RSC Adv, 2015,5(74):60128-60134. doi: 10.1039/C5RA07184D

    16. [16]

      PAN Z Y, WANG R J, CHEN J X. Deoxygenation of methyl laurate as a model compound on Ni-Zn alloy and intermetallic compound catalysts:Geometric and electronic effects of oxophilic Zn[J]. Appl Catal B:Environ, 2018,224:88-100.  

    17. [17]

      HUANG L H, XIE J, CHEN R R, CHU D, CHU W, HSU A. Effect of iron on durability of nickel-based catalysts in auto-thermal reforming of ethanol for hydrogen production[J]. Int J Hydrogen Energy, 2008,33(24):7448-7456.1. doi: 10.1016/j.ijhydene.2008.09.062

    18. [18]

      MONTANARI T, SISANI M, NOCCHETTI M, VIVANI R, DELGADO M C H, RAMIS G, BUSCA G, COSTANTINO U. Zinc-aluminum hydrotalcites as precursors of basic catalysts:Preparation, characterization and study of the activation of methanol[J]. Catal Today, 2010,152(1/4):104-109.  

    19. [19]

      VELU S, SUZUKI K, VIJAYARAJ M, BARMAN S, GOPINATH C S. In situ XPS investigations of Cu1-xNixZnAl-mixed metal oxide catalysts used in the oxidative steam reforming of bio-ethanol[J]. Appl Catal B:Environ, 2005,55(4):287-299. doi: 10.1016/j.apcatb.2004.09.007

    20. [20]

      HUANG L H, LIU Q, CHEN R R, CHU D, HSU A T. Layered double hydroxide derived Co0.3Mg2.7Al1-xFexO4.5±δ catalysts for hydrogen production via auto-thermal reforming of bio-ethanol[J]. Catal Commun, 2010,12(1):40-45. doi: 10.1016/j.catcom.2010.05.019

    21. [21]

      CHE F L, GRAY J T, HA S, MCEWEN J S. Reducing reaction temperature, steam requirements, and coke formation during methane steam reforming using electric fields:A microkinetic modeling and experimental study[J]. ACS Catal, 2017,7(10):6957-6968. doi: 10.1021/acscatal.7b01587

  • 加载中
    1. [1]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    2. [2]

      Xue LiuLipeng WangLuling LiKai WangWenju LiuBiao HuDaofan CaoFenghao JiangJunguo LiKe Liu . Research on Cu-Based and Pt-Based Catalysts for Hydrogen Production through Methanol Steam Reforming. Acta Physico-Chimica Sinica, 2025, 41(5): 100049-0. doi: 10.1016/j.actphy.2025.100049

    3. [3]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    4. [4]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    5. [5]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    6. [6]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Asif Hassan RazaShumail FarhanZhixian YuYan Wu . Double S-Scheme ZnS/ZnO/CdS Heterostructure Photocatalyst for Efficient Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-0. doi: 10.3866/PKU.WHXB202406020

    8. [8]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    9. [9]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    12. [12]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    13. [13]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    14. [14]

      Junqing WENRuoqi WANGJianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243

    15. [15]

      Hao GUOTong WEIQingqing SHENAnqi HONGZeting DENGZheng FANGJichao SHIRenhong LI . Electrocatalytic decoupling of urea solution for hydrogen production by nickel foam-supported Co9S8/Ni3S2 heterojunction. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2141-2154. doi: 10.11862/CJIC.20240085

    16. [16]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    17. [17]

      Jianqiao ZHANGYang LIUYan HEYaling ZHOUFan YANGShihui CHENGBin XIAZhong WANGShijian CHEN . Ni-doped WP2 nanowire self-standingelectrode: Preparation and alkaline electrocatalytic hydrogen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1610-1616. doi: 10.11862/CJIC.20240444

    18. [18]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    19. [19]

      Jiajie CaiChang ChengBowen LiuJianjun ZhangChuanjia JiangBei Cheng . CdS/DBTSO-BDTO S-scheme photocatalyst for H2 production and its charge transfer dynamics. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-0. doi: 10.1016/j.actphy.2025.100084

    20. [20]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

Metrics
  • PDF Downloads(8)
  • Abstract views(666)
  • HTML views(71)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return