Citation: SUN Liang-liang, LIU Li-li, LUO Ling-hong, WU Ye-fan, SHI Ji-jun, CHENG Ling, Xu XU, GUO You-min. Facile synthesis of flower like Pd catalyst for direct ethanol solid oxide fuel cell[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(5): 607-612. shu

Facile synthesis of flower like Pd catalyst for direct ethanol solid oxide fuel cell

  • Corresponding author: GUO You-min, 122193285@qq.com
  • Received Date: 20 November 2015
    Revised Date: 25 February 2016

    Fund Project: the National Nature Science Foundation of China 51162014the National Nature Science Foundation of China 51462011Anhui University personnel start-up funding 10117700069the National Nature Science Foundation of China 51302119

Figures(8)

  • A flower like Pd layer was synthesized through galvanic displacement reaction on Ni-YSZ (yttria stabilized zirconia) anode at room temperature. The morphology of as prepared Pd catalyst was characterized by various techniques. It was shown that three dimensional Pd nanoflowers were formed via nanorods on the Ni-YSZ anode. With Pd nanoflowers as a functional layer of the Ni-YSZ anode, the cell exhibited much higher peak power density and better operation stability in ethanol than that made with conventional Ni-YSZ anode. This study demonstrated that galvanic displacement reaction is a promising way to prepare nanostructured metal catalyst as a result of depressing the carbon deposition in Ni-based anode and improving its output in alcohol fuels.
  • 加载中
    1. [1]

      ZHAN Z L, BARNETT S A. An octane-fueled Solid oxide fuel cell[J]. Science, 2005,308(5723):844-847. doi: 10.1126/science.1109213

    2. [2]

      KOH Y H, SUN J J, KIM H E. Freeze casting of porous Ni-YSZ cermets[J]. Mater Lett, 2007,61(6):1283-1287. doi: 10.1016/j.matlet.2006.07.009

    3. [3]

      GUO Y M, BESSAA M, AGUADO S, STEIL M C, REMBELSKI D, RIEU M, VIRICELLE J P, BEN AMEUR N, GUIZARD C, TARDIVAT C, VERNOUX P, FARRUSSENG D. An all porous solid oxide fuel cell (SOFC): A bridging technology between dual and single chamber SOFCs[J]. Energy Environ Sci, 2013,6(7):2119-2123. doi: 10.1039/c3ee40131f

    4. [4]

      PARK E W, MOON H, PARK M, HYUN S H. Fabrication and characterization of Cu-Ni-YSZ SOFC anodes for direct use of methane via Cu-electroplating[J]. Int J Hydrogen Energy, 2009,34(13):5537-5545. doi: 10.1016/j.ijhydene.2009.04.060

    5. [5]

      KAN H, LEE H. Sn-doped Ni/YSZ anode catalysts with enhanced carbon deposition resistance for an intermediate temperature SOFC[J]. Appl Catal B: Environ, 2010,97(1):108-114.  

    6. [6]

      TAKEGUCHI T, KIKUCHI R, YANO T, EGUCHI K, MURATA K. Effect of precious metal addition to Ni-YSZ cermet on reforming of CH4 and electrochemical activity as SOFC anode[J]. Catal Today, 2003,84(3/4):217-222.  

    7. [7]

      YOON D, MANTHIRAM A. Ni-M (M=Sn and Sb) intermetallic-based catalytic functional layer as a built-in safeguard for hydrocarbon-fueled solid oxide fuel cells[J]. J Mater Chem A, 2015,3(43):21824-21831. doi: 10.1039/C5TA05498B

    8. [8]

      MYUNG J, KIM S, SHIN T H, LEE D, IRVINE J T, MOON J, HYUN S. Nano-composite structural Ni-Sn alloy anodes for high performance and durability of direct methane-fueled SOFCs[J]. J Mater Chem A, 2015,3(26):13801-13806. doi: 10.1039/C4TA06037G

    9. [9]

      YOON D, MANTHIRAM A. Hydrocarbon-fueled solid oxide fuel cells with surface-modified, hydroxylated Sn/Ni-Ce0.8Gd0.2O1.9 heterogeneous catalyst anode[J]. J Mater Chem A, 2014,2(40):17041-17046. doi: 10.1039/C4TA02662D

    10. [10]

      WANG W, WANG H, RAN R, PARK H J, JUNG D W, KWAK C, SHAO Z P. Coking suppression in solid oxide fuel cells operating on ethanol by applying pyridine as fuel additive?[J]. J Power Sources, 2014,206(11):20-29.  

    11. [11]

      BABAEI A, ZHANG L, LIU E, JIANG S P. Performance and carbon deposition over Pd nanoparticle catalyst promoted Ni/GDC anode of SOFCs in methane, methanol and ethanol fuels[J]. Int J Hydrogen Energy, 2012,37(20):15301-15310. doi: 10.1016/j.ijhydene.2012.07.089

    12. [12]

      LEE S H, KIM H. Dual layered anode support for the internal reforming of methane for solid oxide fuel cells[J]. Ceram Int, 2014,40(4):5959-5966. doi: 10.1016/j.ceramint.2013.11.043

    13. [13]

      HASAN M, NEWCOMB S B, ROHAN J F, RAZEEB K M. Ni nanowire supported 3D flower-like Pd nanostructures as an efficient electrocatalyst for electrooxidation of ethanol in alkaline media[J]. J Power Sources, 2012,218(12):148-156.  

    14. [14]

      LI M, XU S H, ZHU Y P, XU Y W, YANG P X, WANG L W, CHU P K. Three-dimensional nanoscale Co3O4 electrode on ordered Ni/Si microchannel plates for electrochemical supercapacitors[J]. Mater Lett, 2014,132:405-408. doi: 10.1016/j.matlet.2014.06.148

    15. [15]

      STRUKOVA G K, STRUKOV G V, EGOROV S V, MAZIKIN A A, KHODOS II, VITKALOV S A. 3D-mesostructures obtained by self-organization of metallic nanowires[J]. Mater Lett, 2014,128:212-215. doi: 10.1016/j.matlet.2014.04.140

    16. [16]

      YANG L, CHOI Y M, QIN W T, CHEN H Y, BLINN K, LIU M F, LIU P, BAI J M, TYSON T A, LIU M L. Promotion of water-mediated carbon removal by nanostructured barium oxide/nickel interfaces in solid oxide fuel cells[J]. Nat Commun, 2011,2:2555-2559.  

    17. [17]

      CHAO C C, HSU C M, CUI Y, PRINZ F B. Improved solid oxide fuel cell performance with nanostructured electrolytes[J]. ACS Nano, 2011,5(7):5692-5696. doi: 10.1021/nn201354p

    18. [18]

      MOTOYAMA M, CHAO C C, AN J, JUNG H J, GÜR T M, PRINZ F B. Nanotubular array solid oxide fuel cell[J]. ACS Nano, 2014,8(1):340-351. doi: 10.1021/nn4042305

    19. [19]

      WANG C C, LUO L L, WU Y F, HOU B X, SUN L L. A novel multilayer aqueous tape casting method for anode-supported planar solid oxide fuel cell[J]. Mater Lett, 2011,65(14):2251-2253. doi: 10.1016/j.matlet.2011.04.077

    20. [20]

      PARK H, LI X X, LAI S Y, CHEN D C, BLINN K S, LIU M F, CHOI S, LIU M L, PARK S, BOTTOMLEY L A. Electrostatic force microscopic characterization of early stage carbon deposition on nickel anodes in solid oxide fuel cells[J]. Nano Lett, 2015,15(9):6047-6050. doi: 10.1021/acs.nanolett.5b02237

    21. [21]

      LIU M M, LU Y Z, CHEN W. PdAg nanorings supported on graphene nanosheets: Highly methanol-tolerant cathode electrocatalyst for alkaline fuel cells[J]. Adv Funct Mater, 2013,23(10):1289-1296. doi: 10.1002/adfm.v23.10

    22. [22]

      SONG Y Y, JIA W Z, LI Y, XIA X H, WANG Q J, ZHAO J W, YAN Y D. Synthesis and patterning of prussian blue nanostructures on silicon wafer via galvanic displacement reaction[J]. Adv Funct Mater, 2007,17(15):2808-2814. doi: 10.1002/(ISSN)1616-3028

    23. [23]

      BABAEI A, JIANG S P, LI J. Electrocatalytic promotion of palladium nanoparticles on hydrogen oxidation on Ni/GDC anodes of SOFCs via spilloverfuel cells and energy conversion[J]. J Electrochem Soc, 2009,156(9):B1022-1028. doi: 10.1149/1.3156637

  • 加载中
    1. [1]

      Xiaoxiao HuangZhi-Long HeYangpeng ChenLei LiZhenyu YangChunyang ZhaiMingshan Zhu . Novel P-doping-tuned Pd nanoflowers/S,N-GQDs photo-electrocatalyst for high-efficient ethylene glycol oxidation. Chinese Chemical Letters, 2024, 35(6): 109271-. doi: 10.1016/j.cclet.2023.109271

    2. [2]

      Kuangdi LuoYang QinXuehao ZhangHanxu JiHeao ZhangJiangtian LiXianjin XiaoXinyu Wang . Regulable toehold lock for the effective control of strand displacement reaction sequence and circuit leakage. Chinese Chemical Letters, 2024, 35(7): 109104-. doi: 10.1016/j.cclet.2023.109104

    3. [3]

      Guan-Nan Xing Di-Ye Wei Hua Zhang Zhong-Qun Tian Jian-Feng Li . Pd-based nanocatalysts for oxygen reduction reaction: Preparation, performance, and in-situ characterization. Chinese Journal of Structural Chemistry, 2023, 42(11): 100021-100021. doi: 10.1016/j.cjsc.2023.100021

    4. [4]

      Min SongQian ZhangTao ShenGuanyu LuoDeli Wang . Surface reconstruction enabled o-PdTe@Pd core-shell electrocatalyst for efficient oxygen reduction reaction. Chinese Chemical Letters, 2024, 35(8): 109083-. doi: 10.1016/j.cclet.2023.109083

    5. [5]

      Mengli Xu Zhenmin Xu Zhenfeng Bian . Achieving Ullmann coupling reaction via photothermal synergy with ultrafine Pd nanoclusters supported on mesoporous TiO2. Chinese Journal of Structural Chemistry, 2024, 43(7): 100305-100305. doi: 10.1016/j.cjsc.2024.100305

    6. [6]

      Xiao LiWanqiang YuYujie WangRuiying LiuQingquan YuRiming HuXuchuan JiangQingsheng GaoHong LiuJiayuan YuWeijia Zhou . Metal-encapsulated nitrogen-doped carbon nanotube arrays electrode for enhancing sulfion oxidation reaction and hydrogen evolution reaction by regulating of intermediate adsorption. Chinese Chemical Letters, 2024, 35(8): 109166-. doi: 10.1016/j.cclet.2023.109166

    7. [7]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    8. [8]

      Yi ZhouYanzhen LiuYani YanZonglin YiYongfeng LiCheng-Meng Chen . Enhanced oxygen reduction reaction on La-Fe bimetal in porous N-doped carbon dodecahedra with CNTs wrapping. Chinese Chemical Letters, 2025, 36(1): 109569-. doi: 10.1016/j.cclet.2024.109569

    9. [9]

      Chenhao ZhangQian ZhangYezhou HuHanyu HuJunhao YangChang YangYe ZhuZhengkai TuDeli Wang . N-doped carbon confined ternary Pt2NiCo intermetallics for efficient oxygen reduction reaction. Chinese Chemical Letters, 2025, 36(3): 110429-. doi: 10.1016/j.cclet.2024.110429

    10. [10]

      Quanxing MaoZhengliang WangZhinan HuZiqi YangHui LiYali YaoZijun YongTianyi Ma . Facial detection of formaldehyde by using acidichromic carbon dots and the reaction between formaldehyde and ammonium chloride. Chinese Chemical Letters, 2025, 36(7): 110499-. doi: 10.1016/j.cclet.2024.110499

    11. [11]

      Qianqing XuQu JiangHaoyue ZhangFang Song . Deciphering the active species of anodically activated carbon-based electrocatalysts for oxygen evolution reaction. Chinese Chemical Letters, 2025, 36(11): 111417-. doi: 10.1016/j.cclet.2025.111417

    12. [12]

      Ting ZhangBaojing HuangHong HuangAiling YanShiqiang LuXufang Qian . Visible light boosted Fenton-like reaction of carbon dot-Fe(Ⅲ) complex: Kinetics and mechanism insights. Chinese Chemical Letters, 2025, 36(11): 110885-. doi: 10.1016/j.cclet.2025.110885

    13. [13]

      Ning ZhangMengjie QinJiawen ZhuXuejing LouXiao TianWende MaYoumei WangMinghua LuZongwei Cai . Thickness-controllable synthesis of metal-organic framework based hollow nanoflowers with magnetic core via liquid phase epitaxy for phosphopeptides enrichment. Chinese Chemical Letters, 2025, 36(4): 110177-. doi: 10.1016/j.cclet.2024.110177

    14. [14]

      Jin LongXingqun ZhengBin WangChenzhong WuQingmei WangLishan Peng . Improving the electrocatalytic performances of Pt-based catalysts for oxygen reduction reaction via strong interactions with single-CoN4-rich carbon support. Chinese Chemical Letters, 2024, 35(5): 109354-. doi: 10.1016/j.cclet.2023.109354

    15. [15]

      Peng Wang Daijie Deng Suqin Wu Li Xu . Cobalt-based deep eutectic solvent modified nitrogen-doped carbon catalyst for boosting oxygen reduction reaction in zinc-air batteries. Chinese Journal of Structural Chemistry, 2024, 43(1): 100199-100199. doi: 10.1016/j.cjsc.2023.100199

    16. [16]

      Xiaoyu ZhaoKai GaoSen XueWei RanRui Liu . Synergistic effects of oxygen vacancies and Pd single atoms on Pd@TiO2−x for efficient HER catalysis. Chinese Chemical Letters, 2025, 36(6): 110309-. doi: 10.1016/j.cclet.2024.110309

    17. [17]

      Yang QinJiangtian LiXuehao ZhangKaixuan WanHeao ZhangFeiyang HuangLimei WangHongxun WangLongjie LiXianjin Xiao . Toeless and reversible DNA strand displacement based on Hoogsteen-bond triplex. Chinese Chemical Letters, 2024, 35(5): 108826-. doi: 10.1016/j.cclet.2023.108826

    18. [18]

      Ting HuYuxuan GuoYixuan MengZe ZhangJi YuJianxin CaiZhenyu Yang . Uniform lithium deposition induced by copper phthalocyanine additive for durable lithium anode in lithium-sulfur batteries. Chinese Chemical Letters, 2024, 35(5): 108603-. doi: 10.1016/j.cclet.2023.108603

    19. [19]

      Dong ChengYouyou FengBingxi FengKe WangGuoxin SongGen WangXiaoli ChengYonghui DengJing Wei . Polyphenol-mediated interfacial deposition strategy for supported manganese oxide catalysts with excellent pollutant degradation performance. Chinese Chemical Letters, 2024, 35(5): 108623-. doi: 10.1016/j.cclet.2023.108623

    20. [20]

      Tao WeiJiahao LuPan ZhangQi ZhangGuang YangRuizhi YangDaifen ChenQian WangYongfu Tang . An intermittent lithium deposition model based on bimetallic MOFs derivatives for dendrite-free lithium anode with ultrahigh areal capacity. Chinese Chemical Letters, 2024, 35(8): 109122-. doi: 10.1016/j.cclet.2023.109122

Metrics
  • PDF Downloads(1)
  • Abstract views(2380)
  • HTML views(184)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return