Citation: ZHENG Li, LI He-jian, XU Xiu-feng. Catalytic decomposition of N2O over Mg-Co composite oxides hydrothermally prepared by using carbon sphere as template[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(5): 569-577. shu

Catalytic decomposition of N2O over Mg-Co composite oxides hydrothermally prepared by using carbon sphere as template

  • Corresponding author: XU Xiu-feng, xxf@ytu.edu.cn
  • Received Date: 18 January 2018
    Revised Date: 13 March 2018

    Fund Project: the Shandong Provincial Natural Science Foundation ZR2017MB020The project was supported by the Shandong Provincial Natural Science Foundation (ZR2017MB020) and Graduate Innovation Foundation of Yantai University (GIFYTU)Graduate Innovation Foundation of Yantai University GIFYTU

Figures(16)

  • MgCo2O4 composite oxides with spinel structure were hydrothermally prepared at 120℃ by using carbon sphere as template and urea as precipitant. K2CO3 solution was impregnated on MgCo2O4 and the K-modified catalyst was obtained. These catalysts were applied in catalytic decomposition of N2O and characterized by X-ray diffraction(XRD), nitrogen physisorption, scanning electron microscopy (SEM), temperature-programmed reduction of hydrogen (H2-TPR), temperature-programmed desorption of oxygen (O2-TPD), and X-ray photoelectron spectroscopy (XPS). Effect of catalysts preparation parameters such as mass ratio of cobalt and magnesium to carbon sphere, molar ratio of urea to metallic cations, on their catalytic activity was investigated. It is shown that the catalyst prepared with mass ratio 0.192 of cobalt and magnesium to carbon sphere, molar ratio 2 of urea to cobalt and magnesium cations, exhibits higher catalytic activity than others. Furthermore, 91% and 62% conversions of N2O could be reached over 0.02 K/MgCo2O4 catalyst at 400℃ after continuous running for 50 h under the atmosphere of oxygen-alone and oxygen-steam together, respectively, revealing that K-modified MgCo2O4 catalyst is stable under both reaction atmospheres.
  • 加载中
    1. [1]

      PACHATOURIDOU E, PAPISTA E, DELIMITIS A, VASILIADES M A, EFSTATHIOU A M, AMIRIDIS M D, ALEXEEV O S, BLOOM D, MARNELLOS G E, KONSOLAKIS M, ILIOPOULOU E. N2O decomposition over ceria-promoted Ir/Al2O3 catalysts:The role of ceria[J]. Appl Catal B:Environ, 2016,187:259-268. doi: 10.1016/j.apcatb.2016.01.049

    2. [2]

      CARABINEIRO S A C, PAPISTA E, MARNELLOS G E, TAVARES P B, MALDONADO-HÓDAR F J, KONSOLAKIS M. Catalytic decomposition of N2O on inorganic oxides:Effect of doping with Au nanoparticles[J]. Mol Catal, 2017,436:78-89. doi: 10.1016/j.mcat.2017.04.009

    3. [3]

      LIN Y, MENG T, MA Z. Catalytic decomposition of N2O over RhOx supported on metal phosphates[J]. J Ind Eng Chem, 2015,28:138-146. doi: 10.1016/j.jiec.2015.02.009

    4. [4]

      LIU Z M, HE C X, CHEN B H, LIU H Y. CuO-CeO2 mixed oxide catalyst for the catalytic decomposition of N2O in the presence of oxygen[J]. Catal Today, 2017,297:78-83. doi: 10.1016/j.cattod.2017.05.074

    5. [5]

      GRZYBEK G, WÓJCIK S, CIURA K, GRYBO Ś J, INDYKA P, OSZAJCA M, STELMACHOWSKI P, WITKOWSKI S, INGER M, WILK M, KOTARBA A, SOJKA Z. Influence of preparation method on dispersion of cobalt spinel over alumina extrudates and the catalyst deN2O activity[J]. Appl Catal B:Environ, 2017,210:34-44. doi: 10.1016/j.apcatb.2017.03.053

    6. [6]

      XIE P F, MA Z, ZHOU H B, HUANG C Y, YUE Y H, SHEN W, XU H L, HUA W M, GAO Z. Catalytic decomposition of N2O over Cu-ZSM-11 catalysts[J]. Microporous Mesoporous Mater, 2014,191:112-117. doi: 10.1016/j.micromeso.2014.02.044

    7. [7]

      WU M F, WANG H, ZHONG L S, ZHANG X Y, HAO Z P, SHEN Q, WEI W, QIAN G G, SUN Y H. Effects of acid pretreatment on Fe-ZSM-5 and Fe-beta catalysts for N2O decomposition[J]. Chin J Catal, 2016,37(6):898-907. doi: 10.1016/S1872-2067(15)61052-X

    8. [8]

      ABU-ZIED B M, SOLIMAN S A, ABDELLAH S E. Pure and Ni-substituted Co3O4 spinel catalysts for direct N2O decomposition[J]. Chin J Catal, 2014,35(7):1105-1112. doi: 10.1016/S1872-2067(14)60058-9

    9. [9]

      KLYUSHINA A, PACULTOVÁ K, KARÁSKOVÁK , JIRÁTOVÁ K, RITZ M, FRIDRICHOVÁ D, VOLODARSKAJA A, OBALOVÁ L. Effect of preparation method on catalytic properties of Co-Mn-Al mixed oxides for N2O decomposition[J]. J Mol Catal A:Chem, 2016,425:237-247. doi: 10.1016/j.molcata.2016.10.014

    10. [10]

      OBALOVÁL , PACULTOVÁ K, BALABÁNOVÁ J, JIRÁTOVÁ K, BASTL Z, VALÁŠKOVÁ M, LACNY Z, KOVANDA F. Effect of Mn/Al ratio in Co-Mn-Al mixed oxide catalysts prepared from hydrotalcite-like precursors on catalytic decomposition of N2O[J]. Catal Today, 2007,119(1/4):233-238.  

    11. [11]

      PU Z Y, LIU Y, ZHOU H, HUANG W Z, ZHENG Y F, LI X N. Catalytic combustion of lean methane at low temperature over ZrO2-modified Co3O4 catalysts[J]. Appl Surf Sci, 2017,422:85-93. doi: 10.1016/j.apsusc.2017.05.231

    12. [12]

      CHELLAM U, XU Z P, ZENG H C. Low-temperature synthesis of MgxCo1-xCo2O4 spinel catalysts for N2O decomposition[J]. Chem Mater, 2000,12(3):650-658. doi: 10.1021/cm990355l

    13. [13]

      ABU-ZIED B M. Nitrous oxide decomposition over alkali-promoted magnesium cobaltite catalysts[J]. Chin J Catal, 2011,32(2):264-272.  

    14. [14]

      ZHENG L, WU C C, XU X F. Catalytic decomposition of N2O over Mg-Co and Mg-Mn-Co composite oxides[J]. J Fuel Chem Technol, 2016,44(12):1494-1501. doi: 10.1016/S1872-5813(17)30005-1

    15. [15]

      SEVILLA M, FUERTES A B. Chemical and structural properties of carbonaceous products obtained by hydrothermal carbonization of saccharides[J]. Chem Eur J, 2009,15(16):4195-4203. doi: 10.1002/chem.v15:16

    16. [16]

      SUN X M, LI Y D. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles[J]. Angew Chem Int Ed, 2004,43(5):597-601. doi: 10.1002/(ISSN)1521-3773

    17. [17]

      TITIRICI M M, ANTONIETTI M, THOMAS A. A generalized synthesis of metal oxide hollow spheres using a hydrothermal approach[J]. Chem Mater, 2006,18(16):3808-3812. doi: 10.1021/cm052768u

    18. [18]

      YU J G, YU X X, HUANG B B, ZHANG X Y, DAI Y. Hydrothermal synthesis and visible-light photocatalytic activity of novel cage-like ferric oxide hollow spheres[J]. Cryst Growth Des, 2009,9(3):1474-1480. doi: 10.1021/cg800941d

    19. [19]

      JIA G, YANG M, SONG Y H, YOU H P, ZHANG H J. General and facile method to prepare uniform Y2O3:Eu hollow microspheres[J]. Cryst Growth Des, 2009,9(1):301-307. doi: 10.1021/cg8004823

    20. [20]

      FRANKEN T, PALKOVITS R. Investigation of potassium doped mixed spinels Cux Co3-xO4 as catalysts for an efficient N2O decomposition in real reaction conditions[J]. Appl Catal B:Environ, 2015,176-177:298-305. doi: 10.1016/j.apcatb.2015.04.002

    21. [21]

      KIM M J, LEE S J, RYU I S, JEON M W, MOON S H, ROH H S, JEON S G. Catalytic decomposition of N2O over cobalt based spinel oxides:The role of additives[J]. Mol Catal, 2017,442:202-207. doi: 10.1016/j.mcat.2017.05.029

    22. [22]

      GRZYBEK G, WÓJCIK S, LEGUTKO P, GRYBOS J, INDYKA P, LESZCZYNSKI B, KOTARBA A, SOJKA Z. Thermal stability and repartition of potassium promoter between the support and active phase in the K-Co2.6Zn0.4O4|α -Al2O3 catalyst for N2O decomposition:Crucial role of activation temperature on catalytic performance[J]. Appl Catal B:Environ, 2017,205:597-604. doi: 10.1016/j.apcatb.2017.01.005

    23. [23]

      KLYUSHINA A, PACULTOVÁK , KREJCOVÁ S, SŁOWIK G, JIRÁTOVÁ K, KOVANDA F, RYCZKOWSKI J, OBALOVÁ L. Advantages of stainless steel sieves as support for catalytic N2O decomposition over K-doped Co3O4[J]. Catal Today, 2015,257:2-10. doi: 10.1016/j.cattod.2015.05.015

    24. [24]

      WANG S L, QIAN L Q, XU H, LÜ G L, DONG W J, TANG W H. Synthesis and structural characterization of cobalt hydroxide carbonate nanorods and nanosheets[J]. J Alloys Compd, 2009,476(1/2):739-743.  

    25. [25]

      AMROUSSE R, TSUTSUMI A, BACHAR A, LAHCENE D. N2O catalytic decomposition over nano-sized particles of Co-substituted Fe3O4substrates[J]. Appl Catal A:Gen, 2013,450(2):253-260.  

    26. [26]

      ZABILSKIY M, DJINOVI ĆP, TCHERNYCHOVA E, PINTAR A. N2O decomposition over CuO/CeO2 catalyst:New insights intoreaction mechanism and inhibiting action of H2O and NO by operando techniques[J]. Appl Catal B:Environ, 2016,197:146-158. doi: 10.1016/j.apcatb.2016.02.024

  • 加载中
    1. [1]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    2. [2]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    3. [3]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    4. [4]

      Yunli XuXuwen DaLei WangYatong PengWanpeng ZhouXiulian LiuYao WuWentao WangXuesong WangQianxiong Zhou . Ru(Ⅱ)-based aggregation-induced emission (AIE) agents with efficient 1O2 generation, photo-catalytic NADH oxidation and anticancer activity. Chinese Chemical Letters, 2025, 36(5): 110168-. doi: 10.1016/j.cclet.2024.110168

    5. [5]

      Guoping YangZhoufu LinXize ZhangJiawei CaoXuejiao ChenYufeng LiuXiaoling LinKe Li . Assembly of Y(Ⅲ)-containing antimonotungstates induced by malic acid with catalytic activity for the synthesis of imidazoles. Chinese Chemical Letters, 2024, 35(12): 110274-. doi: 10.1016/j.cclet.2024.110274

    6. [6]

      Peng ZhangYitao YangTian QinXueqiu WuYuechang WeiJing XiongXi LiuYu WangZhen ZhaoJinqing JiaoLiwei Chen . Interface engineering of Pt/CeO2-{100} catalysts for enhancing catalytic activity in auto-exhaust carbon particles oxidation. Chinese Chemical Letters, 2025, 36(2): 110396-. doi: 10.1016/j.cclet.2024.110396

    7. [7]

      Bofei JIAZhihao LIUZongyuan GAOShuai ZHOUMengxiang WUQian ZHANGXiamei ZHANGShuzhong CHENXiaohan YANGYahong LI . Cu(Ⅱ) and Cu(Ⅰ) complexes based on derivatives of imidazo[1,5-a]pyridine: Synthesis, structures, in situ metal-ligand reactions, and catalytic activity. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1020-1036. doi: 10.11862/CJIC.20240317

    8. [8]

      Xingfen HuangJiefeng ZhuChuan He . Catalytic enantioselective N-silylation of sulfoximine. Chinese Chemical Letters, 2024, 35(4): 108783-. doi: 10.1016/j.cclet.2023.108783

    9. [9]

      Qingbai TianBingLiang YuZhihao LiWei HongQian LiXing Xu . Versatile catalytic membranes anchored with metal-nitrogen based metal oxides for ultrafast Fenton-like oxidation. Chinese Chemical Letters, 2025, 36(6): 110322-. doi: 10.1016/j.cclet.2024.110322

    10. [10]

      Weichen WANGChunhua GONGJunyong ZHANGYanfeng BIHao XUJingli XIE . Construction of two metal-organic frameworks by rigid bis(triazole) and carboxylate mixed-ligands and their catalytic properties for CO2 cycloaddition reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1377-1386. doi: 10.11862/CJIC.20230415

    11. [11]

      Meng WangYan ZhangYunbo YuWenpo ShanHong He . High-temperature calcination dramatically promotes the activity of Cs/Co/Ce-Sn catalyst for soot oxidation. Chinese Chemical Letters, 2025, 36(1): 109928-. doi: 10.1016/j.cclet.2024.109928

    12. [12]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    13. [13]

      Guangchang YangShenglong YangJinlian YuYishun XieChunlei TanFeiyan LaiQianqian JinHongqiang WangXiaohui Zhang . Regulating local chemical environment in O3-type layered sodium oxides by dual-site Mg2+/B3+ substitution achieves durable and high-rate cathode. Chinese Chemical Letters, 2024, 35(9): 109722-. doi: 10.1016/j.cclet.2024.109722

    14. [14]

      Xiaoshuai WuBailei WangYichen LiXiaoxuan GuanMingjing YinWenquan LvYin ChenFei LuTao QinHuyang GaoWeiqian JinYifu HuangCuiping LiMing GaoJunyu Lu . NIR driven catalytic enhanced acute lung injury therapy by using polydopamine@Co nanozyme via scavenging ROS. Chinese Chemical Letters, 2025, 36(2): 110211-. doi: 10.1016/j.cclet.2024.110211

    15. [15]

      Junhao DaiZhu HeXinhai LiGuochun YanHui DuanGuangchao LiZhixing WangHuajun GuoWenjie PengJiexi Wang . Ultrafast spray pyrolysis for synthesizing uniform Mg-doped LiNi0.9Co0.05Mn0.05O2. Chinese Chemical Letters, 2025, 36(6): 110063-. doi: 10.1016/j.cclet.2024.110063

    16. [16]

      Qinwen ZhengXin LiuLintao TianYi ZhouLibing LiaoGuocheng Lv . Mechanism of Fenton catalytic degradation of Rhodamine B induced by microwave and Fe3O4. Chinese Chemical Letters, 2025, 36(4): 109771-. doi: 10.1016/j.cclet.2024.109771

    17. [17]

      Yanyu JinWenzhe SiXing YuanHongjun ChengBin ZhouLi CaiYu WangQibao WangJunhua Li . Tuning TM–O interaction by acid etching in perovskite catalysts boosting catalytic performance. Chinese Chemical Letters, 2025, 36(5): 110260-. doi: 10.1016/j.cclet.2024.110260

    18. [18]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    19. [19]

      Jun ZhangZhiyao ZhengCan Zhu . Stereochemical editing: Catalytic racemization of secondary alcohols and amines. Chinese Chemical Letters, 2024, 35(5): 109160-. doi: 10.1016/j.cclet.2023.109160

    20. [20]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

Metrics
  • PDF Downloads(6)
  • Abstract views(671)
  • HTML views(89)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return