Citation: Ma Ning, Nie Bingyu, Jiang Xuefei, Wu Yang. Probing the Structural Stability and Adsorption Property of Zn-MOF-74 Supported Ionic Liquids[J]. Chemistry, ;2018, 81(6): 517-524. shu

Probing the Structural Stability and Adsorption Property of Zn-MOF-74 Supported Ionic Liquids

  • Corresponding author: Wu Yang, wuyang@lnu.edu.cn
  • Received Date: 27 January 2018
    Accepted Date: 13 April 2018

Figures(6)

  • Ionic liquids (ILs) are widely used as a new green solvent. Taking porous material MOFs as supports in ILs can prospectively reduce the high viscosity of ILs and contribute to improve the adsorption and separation capacity of material. However, how to choose the appropriate MOFs systems to support ILs is a difficult point. In this paper, the structural stability of Zn-MOF-74 which supports ionic liquid[Emim] [BF4] has been studied by VASP and Gaussian 09 packages. Comparing Zn-MOF-74@[Emim] [BF4] materials with pure[Emim] [BF4] and pure Zn-MOF-74, a thorough research has been explored from geometric structure, Bader charges, electron density difference and interactions diagrams. Results showed that Zn-MOF-74 is structurally unstable in the presence of[Emim] [BF4]. The strong interaction generates between the Zn atom and[BF4]- anion of[Emim] [BF4], and the Zn and F1 are bonded by Coulomb forces caused the change of MOF coordination configuration. The loading of IL disrupts the symmetry of Zn-MOF-74 structure and enhances the interionic interactions. After deformation, the charge transfers between Zn-MOF-74 and[Emim] [BF4] and the adsorption energy is -1.032eV. The chemical adsorption between MOF and IL is verified by the electron density difference analysis and the electron interaction. In addition, the adsorption capacity of Zn-MOF-74@[Emim] [BF4] composites for CO2 adsorption and its mechanism were studied.
  • 加载中
    1. [1]

      H Furukawa, K E Cordova, M O'Keeffe et al. Science, 2013, 341(6149):1230444. 

    2. [2]

      G Ferey. Chem. Soc. Rev., 2008, 37(1):191-214. 

    3. [3]

      K Fujie, H Kitagawa. Coord. Chem. Rev., 2016, 307:382-390. 

    4. [4]

       

    5. [5]

      D C Yu, A O Yazaydin, J R Lane et al. Chem. Sci., 2013, 4(9):3544-3556. 

    6. [6]

      W S Drisdell, R Poloni, T M McDonald et al. J. Am. Chem. Soc., 2013, 135(48):18183-18190. 

    7. [7]

      A K Adhikari, K S Lin. Chem. Eng. J., 2016, 284(10):1348-1360. 

    8. [8]

      J Y Kim, R Balderas-Xicohtencatl, L D Zhang et al. J. Am. Chem. Soc., 2017, 139(42):15135-15141. 

    9. [9]

       

    10. [10]

      R Hayes, G G Warr, R Atkin. Chem. Rev., 2015, 115(13):6357-6426. 

    11. [11]

       

    12. [12]

      L J Lozano, C Godínez, A P de los Ríos et al. J. Membr. Sci., 2011, 376(1-2):1-14. 

    13. [13]

      T Selvam, A Machoke, W Schwieger. Appl. Catal. A, 2012, 445-446(47):92-101. 

    14. [14]

      Z G Lei, C N Dai, W J Song. Chem. Eng. Sci., 2015, 127:260-268. 

    15. [15]

      J M Vicent-Luna, J J Gutiérrez-Sevillano, J A Anta et al. J. Phys. Chem. C, 2013, 117(40):20762-20768. 

    16. [16]

      Y F Chen, Z Q Hu, K M Gupta et al. J. Phys. Chem. C, 2011, 115(44):21736-21742. 

    17. [17]

      K M Gupta, Y F Chen, Z Q Hu et al. Phys. Chem. Chem. Phys., 2012, 14(16):5785-5794. 

    18. [18]

      K M Gupta, Y F Chen, J W Jiang. J. Phys. Chem. C, 2013, 117(11):5792-5799. 

    19. [19]

      Z J Li, Y L Xiao, W J Xue et al. J. Phys. Chem. C, 2015, 119(7):3674-3683. 

    20. [20]

      L Peng, J L Zhang, S L Yang et al. Green Chem., 2015, 17(8):4178-4182. 

    21. [21]

      K Fujie, K Otsubo, R Ikeda et al. Chem. Sci., 2015, 6(7):4306-4310. 

    22. [22]

      H Abroshan, H J Kim. Phys. Chem. Chem. Phys., 2015, 17(9):6248-6254. 

    23. [23]

      N R Dhumal, M P Singh, J A Anderson et al. J. Phys. Chem. C, 2016, 120(6):3295-3304. 

    24. [24]

      K Hoshino, F Shimojo. J. Phys-Condens. Matter, 1996, 8(47):9315-9319. 

    25. [25]

      G Kresse, J Furthmuller. Phys. Rev. B, 1996, 54(16):11169-11186. 

    26. [26]

      G Kresse, J Furthmuller. Comput. Mater. Sci., 1996, 6(1):15-50. 

    27. [27]

      G Kresse, J Hafner. Phys. Rev. B, 1993, 48(17):13115-13118. 

    28. [28]

      G Kresse, J Hafner. J. Phys-Condens. Matter, 1994, 6(60):8245-8257. 

    29. [29]

      G Kresse, D Joubert. Phys. Rev. B, 1999, 59(3):1758-1775. 

    30. [30]

      P E Bloechl. Phys. Rev. B, 1994, 50(24):17953-17979. 

    31. [31]

      J P Perdew, K Burke, M Ernzerhof. Phys. Rev. Lett., 1997, 78(7):1396-1396. 

    32. [32]

      T Lu, F W Chen. J. Comput. Chem., 2012, 33(5):580-592. 

    33. [33]

      L H Wei, B H Li, Q J Zhang et al. J. Phys. Chem. C, 2016, 120(47):26908-26914. 

    34. [34]

      N L Rosi, J Kim, M Eddaoudi et al. J. Am. Chem. Soc., 2005, 127(5):1504-1518. 

    35. [35]

       

    36. [36]

      A Bondi. J. Phys. Chem., 1964, 68(3):441-451. 

    37. [37]

      E Peris, J C Lee, J R Rambo. et al. J. Am. Chem. Soc., 1995, 117(12):3485-3491. 

    38. [38]

      A L Dzubak, L C Lin, J Kim et al. Nat. Chem., 2012, 4(10):810-816. 

  • 加载中
    1. [1]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    2. [2]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    3. [3]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    7. [7]

      Yameen AhmedXiangxiang FengYuanji GaoYang DingCaoyu LongMustafa HaiderHengyue LiZhuan LiShicheng HuangMakhsud I. SaidaminovJunliang Yang . Interface Modification by Ionic Liquid for Efficient and Stable FAPbI3 Perovskite Solar Cells. Acta Physico-Chimica Sinica, 2024, 40(6): 2303057-0. doi: 10.3866/PKU.WHXB202303057

    8. [8]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    9. [9]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    12. [12]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    13. [13]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    14. [14]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    15. [15]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    16. [16]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    17. [17]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    18. [18]

      Tongqi Ye Yanqing Wang Qi Wang Huaiping Cong Xianghua Kong Yuewen Ye . Reform of Classical Thermodynamics Curriculum from the Perspective of Computational Chemistry. University Chemistry, 2025, 40(7): 387-392. doi: 10.12461/PKU.DXHX202409128

    19. [19]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    20. [20]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

Metrics
  • PDF Downloads(13)
  • Abstract views(875)
  • HTML views(317)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return