Structure and oxidation reactivity of char: Effects of pyrolysis heating rate and pressure
- Corresponding author: WANG Mei-jun, wangmeijun@tyut.edu.cn
Citation:
YU Yan-xu, KONG Jiao, WANG Mei-jun, CHANG Li-ping. Structure and oxidation reactivity of char: Effects of pyrolysis heating rate and pressure[J]. Journal of Fuel Chemistry and Technology,
;2018, 46(9): 1025-1035.
WEN Y X, XU X, XIAO Y H. Effects of pyrolysis conditions on the pore structure and reactivity of chars[J]. Proc CSEE, 2013,33(29):63-68.
KAJITANI S, ZHANG Y, UMEMOTO S, ASHIZAWA M, HARA S. Co-gasification reactivity of coal and woody biomass in high-temperature gasification[J]. Energy Fuels, 2010,24(1):2598-2609.
RUIZ J A, JUÁRE M C, MORALES M P, MUÑOZ P, MENDÍVIL M A. Biomass gasification for electricity generation:Review of current technology barrier[J]. Renewable Sustainable Energy Rev, 2013,18(2):174-183.
MAHINPEY N, GOMEZ A. Review of gasification fundamentals and new findings:Reactors, feedstock, and kinetic studies[J]. Chem Eng Sci, 2016,148:14-31. doi: 10.1016/j.ces.2016.03.037
LI T T, ZHANG L, DONG L, QIU P H, WANG SH, JIANG SH J, LI C Z. Changes in char structure during the low-temperature pyrolysis in N2 and subsequent gasification in air of Loy Yang brown coal char[J]. Fuel, 2018,212:187-192. doi: 10.1016/j.fuel.2017.10.026
ZHANG L, LI T T, WANG SH, DONG L, LI C Z. Effects of alkali and alkaline earth metallic species and chemical structure on nascent char O2 reactivity[J]. Energy Fuels, 2017,31(12):13578-13584. doi: 10.1021/acs.energyfuels.7b03022
ZHANG Y, ZHENG Y. Co-gasification of coal and biomass in a fixed bed reactor with separate and mixed bed configurations[J]. Fuel, 2016,183:132-138. doi: 10.1016/j.fuel.2016.06.066
ROBERTS D G, HARRIS D J, WALL T F. On the effects of high pressure and heating rate during coal pyrolysis on char gasification reactivity[J]. Energy Fuels, 2003,17(4):887-895. doi: 10.1021/ef020199w
TIAN B, QIAO Y Y, TIAN Y Y, LIU Q. Investigation on the effect of particle size and heating rate on pyrolysis characteristics of a bituminous coal by TG-FTIR[J]. J Anal Appl Pyrolysis, 2016,121:376-386. doi: 10.1016/j.jaap.2016.08.020
CHEN L, ZENG C, GUO X, MAO Y, ZHANG Y, ZHANG X, LI W, LONG Y, ZHU H, EITENEER B, ZAMANSKY V. Gas evolution kinetics of two coal samples during rapid pyrolysis[J]. Fuel Process Technol, 2010,91(8):848-852. doi: 10.1016/j.fuproc.2010.02.010
CETIN E, GUPTA R, MOGHTADERI B. Effect of pyrolysis pressure and heating rate on radiate pine char structure and apparent gasification reactivity[J]. Fuel, 2005,84(10):1328-1334. doi: 10.1016/j.fuel.2004.07.016
GUERRERO M, RUIZ M P, ALZUETA M U, BIBAO R, MILLERA A. Pyrolysis of eucalyptus at different heating rates:Studies of char characterization and oxidative reactivity[J]. J Anal Appl Pyrolysis, 2005,74(1):307-314.
LU L M, KONG CH H, SAHAJWALLA V, HARIS D. Char structural ordering during pyrolysis and combustion and its influence on char reactivity[J]. Fuel, 2002,81(9):1215-1225. doi: 10.1016/S0016-2361(02)00035-2
MERMOUD F, SALVADOR S, VAN DE STEENE L, GOLFIER F. Influence of the pyrolysis heating rate on the steam gasification rate of large wood char particles[J]. Fuel, 2006,85(10):1473-1482.
OKUMURA Y, HANAOKA Y, SAKANISHI K. Effect of pyrolysis conditions on gasification reactivity of woody biomass derived char[J]. Proc Combust Inst, 2009,32(2):2013-2020. doi: 10.1016/j.proci.2008.06.024
CETIN E, MOGHTADIRI B, GUPTA R, WALL T F. Influence of pyrolysis conditions on the structure and gasification reactivity of biomass chars[J]. Fuel, 2004,83(16):2139-2150. doi: 10.1016/j.fuel.2004.05.008
YU J L, LUCAS J A, WALL T F. Formation of the structure of chars during devolatilization of pulverized coal and its thermoproperties:A review[J]. Prog Energy Combust Sci, 2007,33(2):135-170. doi: 10.1016/j.pecs.2006.07.003
LI F H, YAN Q X, HUANG J J, ZHAO J T, FANG Y T, WANG J F. Lignite-char gasification mechanism in mixed atmospheres of steam and CO2 at different pressures[J]. Fuel Process Technol, 2015,138:555-563. doi: 10.1016/j.fuproc.2015.06.035
HARRIS D J, ROBERTS D G, HENDERSON D G. Gasification behavior of Australian coals at high temperature and pressure[J]. Fuel, 2006,85(2):134-142. doi: 10.1016/j.fuel.2005.07.022
LU L, SAHAJWALLA V, KONG C, HARRIS D. Quantitative X-ray diffraction analysis and its application to various coals[J]. Carbon, 2001,39(12):1821-1833. doi: 10.1016/S0008-6223(00)00318-3
SENNECA O, CORTESE L. Thermal annealing of coal at high temperature and high pressure. Effects on fragmentation and on rate of combustion, gasification and oxy-combustion[J]. Fuel, 2014,116(1):221-228.
WANG M J, TIAN J L, ROBERTS D G, CHANG L P, XIE K C. Interactions between corncob and lignite during temperature programmed co-pyrolysis[J]. Fuel, 2015,142:102-108. doi: 10.1016/j.fuel.2014.11.003
WANG W L, REN X Y, CHANG J M, CAI L P, SHI S Q. Characterization of bio-oils and bio-chars obtained from the catalytic pyrolysis of alkali lignin with metal chlorides[J]. Fuel Process Technol, 2015,138:605-611. doi: 10.1016/j.fuproc.2015.06.048
LEE C W, SCARONI A W, JENKINS R D. Effect of pressure on the devolatilization and swelling behavior of a softening coal during rapid heating[J]. Fuel, 1991,70(8):957-965. doi: 10.1016/0016-2361(91)90051-B
ROBERTS D G, HARRIS D J. Char gasification with O2, CO2 and H2O:Effects of pressure on intrinsic reaction kinetics[J]. Energy Fuels, 2000,14(2):483-489. doi: 10.1021/ef9901894
HOWANIEC N. The effects of pressure on coal chars porous structure development[J]. Fuel, 2016,172:118-123. doi: 10.1016/j.fuel.2016.01.028
GUERRERO M, RUIZ M P, ANGELA M, ÁNGELA M, ALZUETA M U, BILBAO R. Characterization of biomass chars formed under different devolatilization conditions:Differences between rice husk and eucalyptus[J]. Energy Fuels, 2008,22(2):1275-1284. doi: 10.1021/ef7005589
LIU Z Y, GUO X J, SHI L, HE W J, WU J F, LIU Q Y, LIU J H. Reaction of volatiles-A crucial step in pyrolysis of coals[J]. Fuel, 2015,154:361-369. doi: 10.1016/j.fuel.2015.04.006
FUSHIMI C, ARAKI K, YOHSUKE Y, TSUTSUMI A. Effect of heating rate on steam gasification of biomass. 1. Reactivity of char[J]. Ind Eng Chem Res, 2003,42(17):3922-3928. doi: 10.1021/ie030056c
CETIN E, MOGHTADERI B, GUPTA R, WALL T F. Biomass gasification kinetics:influences of pressure and char structure[J]. Combust Sci Technol, 2005,177(4):765-791. doi: 10.1080/00102200590917266
LI X J, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅷ. Catalysis and changes in char structure during gasification in steam[J]. Fuel, 2006,85(10/11):1518-1525.
WANG M J, ROBERTS D G, KOCHANEK M A, HARRIS D J, CHANG L P, LI C Z. Raman spectroscopic investigations into links between reactivity and char chemical structure[J]. Energy Fuels, 2014,28(1):285-290. doi: 10.1021/ef401281h
TORSTEN K, CHRISTIAN L, ALEXANDER W. Qualitative evaluation of alkali release during the pyrolysis of biomass[J]. Energy Fuels, 2007,21(5):3017-3022. doi: 10.1021/ef070094z
LI C Z. Importance of volatile-char interactions during the pyrolysis and gasification of low-rank fuels-A review[J]. Fuel, 2013,112:609-623. doi: 10.1016/j.fuel.2013.01.031
SATHE C, HAYASHI J L, LI C Z, CHIBA T. Release of alkali and alkaline earth metallic species during rapid pyrolysis of a victorian brown coal at elevated pressures[J]. Fuel, 2003,82(12):1491-1497. doi: 10.1016/S0016-2361(03)00070-X
Xingqun Pu , Rongrong Liu , Yuting Xie , Chenjing Yang , Jingyi Chen , Baoling Guo , Chun-Xia Zhao , Peng Zhao , Jian Ruan , Fangfu Ye , David A Weitz , Dong Chen . One-step preparation of biocompatible amphiphilic dimer nanoparticles with tunable particle morphology and surface property for interface stabilization and drug delivery. Chinese Chemical Letters, 2025, 36(3): 109820-. doi: 10.1016/j.cclet.2024.109820
Manyu Zhu , Fei Liang , Lie Wu , Zihao Li , Chen Wang , Shule Liu , Xiue Jiang . Revealing the difference of Stark tuning rate between interface and bulk by surface-enhanced infrared absorption spectroscopy. Chinese Chemical Letters, 2025, 36(2): 109962-. doi: 10.1016/j.cclet.2024.109962
Dongmei Yao , Junsheng Zheng , Liming Jin , Xiaomin Meng , Zize Zhan , Runlin Fan , Cong Feng , Pingwen Ming . Effect of surface oxidation on the interfacial and mechanical properties in graphite/epoxy composites composite bipolar plates. Chinese Chemical Letters, 2024, 35(11): 109382-. doi: 10.1016/j.cclet.2023.109382
Fangwen Peng , Zhen Luo , Yingjin Ma , Haibo Ma . Theoretical study of aromaticity reversal in dimethyldihydropyrene derivatives. Chinese Journal of Structural Chemistry, 2024, 43(5): 100273-100273. doi: 10.1016/j.cjsc.2024.100273
Quan Zhou , Xiao-Min Chen , Xujie Qin , Zhe-Ning Chen , Jun Chen , Wei Zhuang . The counterintuitive aromaticity of bent metallabenzenes: A theoretical exploration. Chinese Chemical Letters, 2025, 36(4): 109770-. doi: 10.1016/j.cclet.2024.109770
Caixia Zhu , Qing Hong , Kaiyuan Wang , Yanfei Shen , Songqin Liu , Yuanjian Zhang . Single nanozyme-based colorimetric biosensor for dopamine with enhanced selectivity via reactivity of oxidation intermediates. Chinese Chemical Letters, 2024, 35(10): 109560-. doi: 10.1016/j.cclet.2024.109560
Jumei Zhang , Ziheng Zhang , Gang Li , Hongjin Qiao , Hua Xie , Ling Jiang . Ligand-mediated reactivity in CO oxidation of yttrium-nickel monoxide carbonyl complexes. Chinese Chemical Letters, 2025, 36(2): 110278-. doi: 10.1016/j.cclet.2024.110278
Shicheng Dong , Jun Zhu . Could π-aromaticity cross an unsaturated system to a fully saturated one?. Chinese Chemical Letters, 2024, 35(6): 109214-. doi: 10.1016/j.cclet.2023.109214
Zhiwei Zhong , Yanbin Huang , Wantai Yang . A simple photochemical method for surface fluorination using perfluoroketones. Chinese Chemical Letters, 2024, 35(5): 109339-. doi: 10.1016/j.cclet.2023.109339
Yukai Tong , Zhijun Wu , Bo Zhou , Min Hu , Anpei Ye . Surface tension of single suspended aerosol microdroplets. Chinese Chemical Letters, 2024, 35(4): 109062-. doi: 10.1016/j.cclet.2023.109062
Yu He , Hao Jiang , Shaoxuan Yuan , Jiayi Lu , Qiang Sun . On-surface photo-induced dechlorination. Chinese Chemical Letters, 2024, 35(9): 109807-. doi: 10.1016/j.cclet.2024.109807
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Yongfeng Wang . Recent progress on surface chemistry Ⅰ: Assembly and reaction. Chinese Chemical Letters, 2024, 35(12): 110055-. doi: 10.1016/j.cclet.2024.110055
Xin Li , Zhen Xu , Donglei Bu , Jinming Cai , Huamei Chen , Qi Chen , Ting Chen , Fang Cheng , Lifeng Chi , Wenjie Dong , Zhenchao Dong , Shixuan Du , Qitang Fan , Xing Fan , Qiang Fu , Song Gao , Jing Guo , Weijun Guo , Yang He , Shimin Hou , Ying Jiang , Huihui Kong , Baojun Li , Dengyuan Li , Jie Li , Qing Li , Ruoning Li , Shuying Li , Yuxuan Lin , Mengxi Liu , Peinian Liu , Yanyan Liu , Jingtao Lü , Chuanxu Ma , Haoyang Pan , JinLiang Pan , Minghu Pan , Xiaohui Qiu , Ziyong Shen , Qiang Sun , Shijing Tan , Bing Wang , Dong Wang , Li Wang , Lili Wang , Tao Wang , Xiang Wang , Xingyue Wang , Xueyan Wang , Yansong Wang , Yu Wang , Kai Wu , Wei Xu , Na Xue , Linghao Yan , Fan Yang , Zhiyong Yang , Chi Zhang , Xue Zhang , Yang Zhang , Yao Zhang , Xiong Zhou , Junfa Zhu , Yajie Zhang , Feixue Gao , Li Wang . Recent progress on surface chemistry Ⅱ: Property and characterization. Chinese Chemical Letters, 2025, 36(1): 110100-. doi: 10.1016/j.cclet.2024.110100
Xianxu Chu , Lu Wang , Junru Li , Hui Xu . Surface chemical microenvironment engineering of catalysts by organic molecules for boosting electrocatalytic reaction. Chinese Chemical Letters, 2024, 35(8): 109105-. doi: 10.1016/j.cclet.2023.109105
Ce Liang , Qiuhui Sun , Adel Al-Salihy , Mengxin Chen , Ping Xu . Recent advances in crystal phase induced surface-enhanced Raman scattering. Chinese Chemical Letters, 2024, 35(9): 109306-. doi: 10.1016/j.cclet.2023.109306
Wenhao Chen , Jian Du , Hanbin Zhang , Hancheng Wang , Kaicheng Xu , Zhujun Gao , Jiaming Tong , Jin Wang , Junjun Xue , Ting Zhi , Longlu Wang . Surface treatment of GaN nanowires for enhanced photoelectrochemical water-splitting. Chinese Chemical Letters, 2024, 35(9): 109168-. doi: 10.1016/j.cclet.2023.109168
Guoliang Liu , Zhiqiang Liu , Anmin Zheng . Modulation of zeolite surface realizes dynamic copper species redispersion. Chinese Journal of Structural Chemistry, 2024, 43(6): 100308-100308. doi: 10.1016/j.cjsc.2024.100308
Ping Wang , Tianbao Zhang , Zhenxing Li . Reconstruction mechanism of Cu surface in CO2 reduction process. Chinese Journal of Structural Chemistry, 2024, 43(8): 100328-100328. doi: 10.1016/j.cjsc.2024.100328
Chenghao Ge , Peng Wang , Pei Yuan , Tai Wu , Rongjun Zhao , Rong Huang , Lin Xie , Yong Hua . Tuning hot carrier transfer dynamics by perovskite surface modification. Chinese Chemical Letters, 2024, 35(10): 109352-. doi: 10.1016/j.cclet.2023.109352
Dongpu Wu , Zheng Yang , Yuchen Xia , Lulu Wu , Yingxia Zhou , Caoyuan Niu , Puhui Xie , Xin Zheng , Zhanqi Cao . Surface controllable wettability using amphiphilic rotaxane molecular shuttles. Chinese Chemical Letters, 2025, 36(2): 110353-. doi: 10.1016/j.cclet.2024.110353
note:L-SC-0.1 represents the L-SC prepared under 0.1 MPa, 5 nm, the other analogy