Citation: CHEN Wu-hua, WANG Ye-fei, HE Zhen-pei, DING Ming-chen. Stability, rheology and displacement performance of nano-SiO2/HPAM/NaCl dispersion systems[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(5): 568-576. shu

Stability, rheology and displacement performance of nano-SiO2/HPAM/NaCl dispersion systems

  • Corresponding author: CHEN Wu-hua, cwh8157@163.com
  • Received Date: 6 January 2020
    Revised Date: 6 April 2020

    Fund Project: the National Science and Technology Major Project of China 2016ZX05058-003-003The project was support by the National Science and Technology Major Project of China (2016ZX05058-003-003)

Figures(10)

  • The stability, rheological properties and oil/water interfacial tension of Nano-SiO2/HPAM/NaCl systems at 60 ℃ were studied by Zetasizer, rheometer and spin-drop method, respectively. The results indicated that the zeta potential value of nano-SiO2 became more negative and the particle size was significantly increased with addition of HPAM. Meanwhile, there was no obvious turbidity phenomenon after 10 d. The nano-SiO2/HPAM suspensions had higher viscosity and the viscosity retention was improved in the presence of salt at high temperature and shear rate as compared to HPAM solution. In this work, the nano-SiO2 threshold for 0.18%(mass ratio) HPAM solution was 0.5% (mass ratio). When the mass ratio of nano-SiO2 was less than 0.5%, the viscosity, storage modulus, loss modulus and creeping recovery properties were enhanced as well as the critical strain was decreased with the increase of nano-SiO2 mass fraction. However, the opposite phenomenon was investigated when the mass ratio of nano-SiO2 was more than 0.5%. The reason for this result was that the polymer amounts, polymer conformation onto the nano-SiO2 surface and the network structure between nano-SiO2 and HPAM were different when the nano-SiO2 mass fraction was different. Oil/water interfacial tension values of nano-SiO2/HPAM suspensions were lower than that of HPAM solution, and thus with addition of 0.2% and 0.5% (mass ratio) nano-SiO2, the nano-SiO2/HPAM suspensions had ultimate oil recoveries of 4.5% and 6.0% higher than polymer flooding.
  • 加载中
    1. [1]

      WANG J, DONG M. Optimum effective viscosity of polymer solution for improving heavy oil recovery[J]. J Pet Sci Eng, 2009,67(3):155-158.  

    2. [2]

      LI Mei-rong, LIU Zhi, SONG Xin-wang, MA Bao-dong, ZHANG Wen. Effect of metal ions on the viscosity of polyacrylamide solution and the mechanism of viscosity degradation[J]. J Fuel Chem Technol, 2012,40(1):43-47. doi: 10.3969/j.issn.0253-2409.2012.01.007 

    3. [3]

      PEI H H, ZHANG G C, GE J J, ZHANG L, WANG H. Effect of polymer on the interaction of alkali with heavy oil and its use in improving oil recovery[J]. Colloid Surface A, 2014,446(5):57-64.  

    4. [4]

      LI Mei-rong, HUANG Man, QU Cai-xia, CAO Xu-long, ZHANG Ji-chao, LIU Kun. Effect of shear action on the microcosmic structure and performance of functional polymer used in oil displacement[J]. J Fuel Chem Technol, 2013,41(4):449-455. doi: 10.3969/j.issn.0253-2409.2013.04.010 

    5. [5]

      CORREDOR R L M, SARAPARDEH A H, HUSEIN M M, DONG P M. Rheological behavior of surface modified silica nanoparticles dispersed in partially hydrolyzed polyacrylamide and xanthan gum solutions:Experimental measurements, mechanistic understanding, and model development[J]. Energy Fuels, 2018,32(10):10628-10638. doi: 10.1021/acs.energyfuels.8b02658

    6. [6]

      CAO J, SONG T, WANG X J, ZHU Y J, WANG S S, ZHAO M T, MIAO Y J, ZHANG J. Studies on the rheological properties of amphiphilic nanosilica and a partially hydrolyzed polyacrylamide hybrid for enhanced oil recovery[J]. Chem Eng Sci, 2019,206:146-155. doi: 10.1016/j.ces.2019.05.034

    7. [7]

      ZHENG Chao. Preparation of surface modified nanosilica and its impact on enhanced oil recovery of HPAM solution[D]. Kaifeng: Henan University, 2017. 

    8. [8]

      QIN Xiao-ping. The feasible research of improving sweep efficiency using the modified nano-SiO2/AA/AM copolymer[D]. Chengdu: Southwest Petroleum University, 2014. 

    9. [9]

      MOHAMMED B A, KOUROSH R, RADZUAN J, ALI E B. Appraising the impact of metal-oxide nanoparticles on rheological properties of HPAM in different electrolyte solutions for enhanced oil recovery[J]. J Pet Sci Eng, 2019,172:1057-1068. doi: 10.1016/j.petrol.2018.09.013

    10. [10]

      KANG W L, CAO C X, GUO S J, TANG X C, ZEESHAN A L, GAO Y B, ZHANG X F, MUHAMMAD W I, YANG H B. Mechanism of silica nanoparticles better-thickening effect on amphiphilic polymers in high salinity condition[J]. J Mol Liq, 2019,277:254-260. doi: 10.1016/j.molliq.2018.12.092

    11. [11]

      NEETISH K M, AJAY M. Studies on behavior of suspension of silica nanoparticle in aqueous polyacrylamide solution for application in enhanced oil recovery[J]. Pet Sci Technol, 2016,34(5):429-436. doi: 10.1080/10916466.2016.1145693

    12. [12]

      MAGHZI A, KHARRAT R, MOHEBBI A, GHAZANFARI M H. The impact of silica nanoparticles on the performance of polymer solution in presence of salts in polymer flooding for heavy oil recovery[J]. Fuel, 2014,123:123-132. doi: 10.1016/j.fuel.2014.01.017

    13. [13]

      KHALILINEZHAD S S, CHERAGHIAN G, ROAYAEI E, TABATABAEE H, KARAMBEIGI M S. Improving heavy oil recovery in the polymer flooding process by utilizing hydrophilic silica nanoparticles[J]. Energy Sources Part A, 2017,12:1-10. doi: 10.1080/15567249.2014.881931

    14. [14]

      SAEED J D S, LESLEY A J, ZHANG , Y H. Insight into the stability of hydrophilic silica nanoparticles in seawater for Enhanced oil recovery implications[J]. Fuel, 2018,216:559-571. doi: 10.1016/j.fuel.2017.11.091

    15. [15]

      METIN C O, LAKEA L W, MIRANDA C R, NGUYEN Q P. Stability of aqueous silica nanoparticle dispersions[J]. J Nanopart Res, 2010,13(2):839-850. doi: 10.1007/s11051-010-0085-1

    16. [16]

      WANG Ting. pH-induced self-assembly of HPAM and HPAM/HEC in aqueous solution[D]. Wuxi: Jiangnan University, 2009. 

    17. [17]

      LIN Di. Adsorption and aggregation mechanisms between bacterial extracellular polymeric substrances and soil minerals and nanoparticles[D]. Wuhan: Huazhong Agricultural University, 2018. 

    18. [18]

      GIRALDO L J, GIRALDO M A, LLANOS S, MAYA G, ZABALA R D, NASSAR N N, FRANCO C A, ALVARADO V, CORTES F B. The effects of SiO2 nanoparticles on the thermal stability and rheological behavior of hydrolyzed polyacrylamide based polymeric solutions[J]. J Pet Sci Eng, 2017,159:841-852. doi: 10.1016/j.petrol.2017.10.009

    19. [19]

      BARANY S. Polymer adsorption and electrokinetic potential of dispersed particles in weak and strong electric fields[J]. Adv Colloid Interface, 2015,222:58-69. doi: 10.1016/j.cis.2014.09.009

    20. [20]

      LIU FU Sheng-cong, XIAO Han-ning, LI Yu-ping. Adsorption behavior of poly(acrylic acid) on the surface of nanoparticulate titanium dioxide[J]. Chem J Chin Univ, 2005,26(4):742-746. doi: 10.3321/j.issn:0251-0790.2005.04.028

    21. [21]

      GREGORY J, BARANY S. Adsorption and flocculation by polymers and polymer mixtures[J]. Adv Colloid Interface Sci, 2011,169(1):1-12. doi: 10.1016/j.cis.2011.06.004

    22. [22]

      SUN Xiu-zhi. Study on shearing stability of HPAM solution in flooding[D]. Qingdao: China University of Petroleum(East China), 2009. 

    23. [23]

      CHEN W H, CHEN J. Crystallization behaviors of biodiesel in relation to its rheological properties[J]. Fuel, 2016,171:178-185. doi: 10.1016/j.fuel.2015.12.049

    24. [24]

      PU Wan-fen, PENG Cai-zhen, YANG Qing-yan, WU Xiao-ling, HUANG Ai-bin. Effect of creeping reversion of polymer solution in porous medium on the displacement efficiency[J]. J Southwest Pet Inst, 2000,22(2):62-67. doi: 10.3863/j.issn.1674-5086.2000.02.019

    25. [25]

      BINKS B P, RODRIGUES J A, FRITH W J. Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant[J]. Langmuir, 2007,23(14):3626-3636.  

  • 加载中
    1. [1]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Mingxuan Qi Lanyu Jin Honghe Yao Zipeng Xu Teng Cheng Qi Chen Cheng Zhu Yang Bai . 钙钛矿太阳能电池在反向偏压下的电学失效及稳定性研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-. doi: 10.1016/j.actphy.2025.100088

    4. [4]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    5. [5]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    6. [6]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072

    7. [7]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    8. [8]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    9. [9]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    10. [10]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    11. [11]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    12. [12]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    13. [13]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    14. [14]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    15. [15]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    16. [16]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    17. [17]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    18. [18]

      Xinpin PanYongjian CuiZhe WangBowen LiHailong WangJian HaoFeng LiJing Li . Robust chemo-mechanical stability of additives-free SiO2 anode realized by honeycomb nanolattice for high performance Li-ion batteries. Chinese Chemical Letters, 2024, 35(10): 109567-. doi: 10.1016/j.cclet.2024.109567

    19. [19]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    20. [20]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

Metrics
  • PDF Downloads(11)
  • Abstract views(806)
  • HTML views(119)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return