Citation: CHEN Wu-hua, WANG Ye-fei, HE Zhen-pei, DING Ming-chen. Stability, rheology and displacement performance of nano-SiO2/HPAM/NaCl dispersion systems[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(5): 568-576. shu

Stability, rheology and displacement performance of nano-SiO2/HPAM/NaCl dispersion systems

  • Corresponding author: CHEN Wu-hua, cwh8157@163.com
  • Received Date: 6 January 2020
    Revised Date: 6 April 2020

    Fund Project: the National Science and Technology Major Project of China 2016ZX05058-003-003The project was support by the National Science and Technology Major Project of China (2016ZX05058-003-003)

Figures(10)

  • The stability, rheological properties and oil/water interfacial tension of Nano-SiO2/HPAM/NaCl systems at 60 ℃ were studied by Zetasizer, rheometer and spin-drop method, respectively. The results indicated that the zeta potential value of nano-SiO2 became more negative and the particle size was significantly increased with addition of HPAM. Meanwhile, there was no obvious turbidity phenomenon after 10 d. The nano-SiO2/HPAM suspensions had higher viscosity and the viscosity retention was improved in the presence of salt at high temperature and shear rate as compared to HPAM solution. In this work, the nano-SiO2 threshold for 0.18%(mass ratio) HPAM solution was 0.5% (mass ratio). When the mass ratio of nano-SiO2 was less than 0.5%, the viscosity, storage modulus, loss modulus and creeping recovery properties were enhanced as well as the critical strain was decreased with the increase of nano-SiO2 mass fraction. However, the opposite phenomenon was investigated when the mass ratio of nano-SiO2 was more than 0.5%. The reason for this result was that the polymer amounts, polymer conformation onto the nano-SiO2 surface and the network structure between nano-SiO2 and HPAM were different when the nano-SiO2 mass fraction was different. Oil/water interfacial tension values of nano-SiO2/HPAM suspensions were lower than that of HPAM solution, and thus with addition of 0.2% and 0.5% (mass ratio) nano-SiO2, the nano-SiO2/HPAM suspensions had ultimate oil recoveries of 4.5% and 6.0% higher than polymer flooding.
  • 加载中
    1. [1]

      WANG J, DONG M. Optimum effective viscosity of polymer solution for improving heavy oil recovery[J]. J Pet Sci Eng, 2009,67(3):155-158.  

    2. [2]

      LI Mei-rong, LIU Zhi, SONG Xin-wang, MA Bao-dong, ZHANG Wen. Effect of metal ions on the viscosity of polyacrylamide solution and the mechanism of viscosity degradation[J]. J Fuel Chem Technol, 2012,40(1):43-47. doi: 10.3969/j.issn.0253-2409.2012.01.007 

    3. [3]

      PEI H H, ZHANG G C, GE J J, ZHANG L, WANG H. Effect of polymer on the interaction of alkali with heavy oil and its use in improving oil recovery[J]. Colloid Surface A, 2014,446(5):57-64.  

    4. [4]

      LI Mei-rong, HUANG Man, QU Cai-xia, CAO Xu-long, ZHANG Ji-chao, LIU Kun. Effect of shear action on the microcosmic structure and performance of functional polymer used in oil displacement[J]. J Fuel Chem Technol, 2013,41(4):449-455. doi: 10.3969/j.issn.0253-2409.2013.04.010 

    5. [5]

      CORREDOR R L M, SARAPARDEH A H, HUSEIN M M, DONG P M. Rheological behavior of surface modified silica nanoparticles dispersed in partially hydrolyzed polyacrylamide and xanthan gum solutions:Experimental measurements, mechanistic understanding, and model development[J]. Energy Fuels, 2018,32(10):10628-10638. doi: 10.1021/acs.energyfuels.8b02658

    6. [6]

      CAO J, SONG T, WANG X J, ZHU Y J, WANG S S, ZHAO M T, MIAO Y J, ZHANG J. Studies on the rheological properties of amphiphilic nanosilica and a partially hydrolyzed polyacrylamide hybrid for enhanced oil recovery[J]. Chem Eng Sci, 2019,206:146-155. doi: 10.1016/j.ces.2019.05.034

    7. [7]

      ZHENG Chao. Preparation of surface modified nanosilica and its impact on enhanced oil recovery of HPAM solution[D]. Kaifeng: Henan University, 2017. 

    8. [8]

      QIN Xiao-ping. The feasible research of improving sweep efficiency using the modified nano-SiO2/AA/AM copolymer[D]. Chengdu: Southwest Petroleum University, 2014. 

    9. [9]

      MOHAMMED B A, KOUROSH R, RADZUAN J, ALI E B. Appraising the impact of metal-oxide nanoparticles on rheological properties of HPAM in different electrolyte solutions for enhanced oil recovery[J]. J Pet Sci Eng, 2019,172:1057-1068. doi: 10.1016/j.petrol.2018.09.013

    10. [10]

      KANG W L, CAO C X, GUO S J, TANG X C, ZEESHAN A L, GAO Y B, ZHANG X F, MUHAMMAD W I, YANG H B. Mechanism of silica nanoparticles better-thickening effect on amphiphilic polymers in high salinity condition[J]. J Mol Liq, 2019,277:254-260. doi: 10.1016/j.molliq.2018.12.092

    11. [11]

      NEETISH K M, AJAY M. Studies on behavior of suspension of silica nanoparticle in aqueous polyacrylamide solution for application in enhanced oil recovery[J]. Pet Sci Technol, 2016,34(5):429-436. doi: 10.1080/10916466.2016.1145693

    12. [12]

      MAGHZI A, KHARRAT R, MOHEBBI A, GHAZANFARI M H. The impact of silica nanoparticles on the performance of polymer solution in presence of salts in polymer flooding for heavy oil recovery[J]. Fuel, 2014,123:123-132. doi: 10.1016/j.fuel.2014.01.017

    13. [13]

      KHALILINEZHAD S S, CHERAGHIAN G, ROAYAEI E, TABATABAEE H, KARAMBEIGI M S. Improving heavy oil recovery in the polymer flooding process by utilizing hydrophilic silica nanoparticles[J]. Energy Sources Part A, 2017,12:1-10. doi: 10.1080/15567249.2014.881931

    14. [14]

      SAEED J D S, LESLEY A J, ZHANG , Y H. Insight into the stability of hydrophilic silica nanoparticles in seawater for Enhanced oil recovery implications[J]. Fuel, 2018,216:559-571. doi: 10.1016/j.fuel.2017.11.091

    15. [15]

      METIN C O, LAKEA L W, MIRANDA C R, NGUYEN Q P. Stability of aqueous silica nanoparticle dispersions[J]. J Nanopart Res, 2010,13(2):839-850. doi: 10.1007/s11051-010-0085-1

    16. [16]

      WANG Ting. pH-induced self-assembly of HPAM and HPAM/HEC in aqueous solution[D]. Wuxi: Jiangnan University, 2009. 

    17. [17]

      LIN Di. Adsorption and aggregation mechanisms between bacterial extracellular polymeric substrances and soil minerals and nanoparticles[D]. Wuhan: Huazhong Agricultural University, 2018. 

    18. [18]

      GIRALDO L J, GIRALDO M A, LLANOS S, MAYA G, ZABALA R D, NASSAR N N, FRANCO C A, ALVARADO V, CORTES F B. The effects of SiO2 nanoparticles on the thermal stability and rheological behavior of hydrolyzed polyacrylamide based polymeric solutions[J]. J Pet Sci Eng, 2017,159:841-852. doi: 10.1016/j.petrol.2017.10.009

    19. [19]

      BARANY S. Polymer adsorption and electrokinetic potential of dispersed particles in weak and strong electric fields[J]. Adv Colloid Interface, 2015,222:58-69. doi: 10.1016/j.cis.2014.09.009

    20. [20]

      LIU FU Sheng-cong, XIAO Han-ning, LI Yu-ping. Adsorption behavior of poly(acrylic acid) on the surface of nanoparticulate titanium dioxide[J]. Chem J Chin Univ, 2005,26(4):742-746. doi: 10.3321/j.issn:0251-0790.2005.04.028

    21. [21]

      GREGORY J, BARANY S. Adsorption and flocculation by polymers and polymer mixtures[J]. Adv Colloid Interface Sci, 2011,169(1):1-12. doi: 10.1016/j.cis.2011.06.004

    22. [22]

      SUN Xiu-zhi. Study on shearing stability of HPAM solution in flooding[D]. Qingdao: China University of Petroleum(East China), 2009. 

    23. [23]

      CHEN W H, CHEN J. Crystallization behaviors of biodiesel in relation to its rheological properties[J]. Fuel, 2016,171:178-185. doi: 10.1016/j.fuel.2015.12.049

    24. [24]

      PU Wan-fen, PENG Cai-zhen, YANG Qing-yan, WU Xiao-ling, HUANG Ai-bin. Effect of creeping reversion of polymer solution in porous medium on the displacement efficiency[J]. J Southwest Pet Inst, 2000,22(2):62-67. doi: 10.3863/j.issn.1674-5086.2000.02.019

    25. [25]

      BINKS B P, RODRIGUES J A, FRITH W J. Synergistic interaction in emulsions stabilized by a mixture of silica nanoparticles and cationic surfactant[J]. Langmuir, 2007,23(14):3626-3636.  

  • 加载中
    1. [1]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Mingxuan QiLanyu JinHonghe YaoZipeng XuTeng ChengQi ChenCheng ZhuYang Bai . Recent progress on electrical failure and stability of perovskite solar cells under reverse bias. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-0. doi: 10.1016/j.actphy.2025.100088

    4. [4]

      Wang WangYucheng LiuShengli Chen . Use of NiFe Layered Double Hydroxide as Electrocatalyst in Oxygen Evolution Reaction: Catalytic Mechanisms, Electrode Design, and Durability. Acta Physico-Chimica Sinica, 2024, 40(2): 2303059-0. doi: 10.3866/PKU.WHXB202303059

    5. [5]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    6. [6]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    7. [7]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    8. [8]

      Meng-Yin WangRuo-Bei HuangJian-Feng XiongJing-Hua TianJian-Feng LiZhong-Qun Tian . Critical Role and Recent Development of Separator in Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2307017-0. doi: 10.3866/PKU.WHXB202307017

    9. [9]

      Xuechen HuQiuying XiaFan YueXinyi HeZhenghao MeiJinshi WangHui XiaXiaodong Huang . Electrochemical Characteristics of LiNbO3 Anode Film and Its Applications in All-Solid-State Thin-Film Lithium-Ion Battery. Acta Physico-Chimica Sinica, 2024, 40(2): 2309046-0. doi: 10.3866/PKU.WHXB202309046

    10. [10]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    11. [11]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    12. [12]

      Jingyi XieQianxi LüWeizhen QiaoChenyu BuYusheng ZhangXuejun ZhaiRenqing LüYongming ChaiBin Dong . Enhancing Cobalt―Oxygen Bond to Stabilize Defective Co2MnO4 in Acidic Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305021-0. doi: 10.3866/PKU.WHXB202305021

    13. [13]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    14. [14]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    15. [15]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    16. [16]

      Yingtong ShiGuotong XuGuizeng LiangDi LanSiyuan ZhangYanru WangDaohao LiGuanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-0. doi: 10.1016/j.actphy.2025.100082

    17. [17]

      Yawen GuoDawei LiYang GaoCuihong Li . Recent Progress on Stability of Organic Solar Cells Based on Non-Fullerene Acceptors. Acta Physico-Chimica Sinica, 2024, 40(6): 2306050-0. doi: 10.3866/PKU.WHXB202306050

    18. [18]

      Yifeng TANPing CAOKai MAJingtong LIYuheng WANG . Synthesis of pentaerythritol tetra(2-ethylthylhexoate) catalyzed by h-MoO3/SiO2. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2155-2162. doi: 10.11862/CJIC.20240147

    19. [19]

      Guang-Xu DuanQueting ChenRui-Rui ShaoHui-Huang SunTong YuanDong-Hao Zhang . Encapsulating lipase on the surface of magnetic ZIF-8 nanosphers with mesoporous SiO2 nano-membrane for enhancing catalytic performance. Chinese Chemical Letters, 2025, 36(2): 109751-. doi: 10.1016/j.cclet.2024.109751

    20. [20]

      Ke QiuFengmei WangMochou LiaoKerun ZhuJiawei ChenWei ZhangYongyao XiaXiaoli DongFei Wang . A Fumed SiO2-based Composite Hydrogel Polymer Electrolyte for Near-Neutral Zinc-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(3): 2304036-0. doi: 10.3866/PKU.WHXB202304036

Metrics
  • PDF Downloads(11)
  • Abstract views(849)
  • HTML views(126)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return