Citation: XUE Yi-fan, LI Meng-yao, FENG Jie, FAN Wen-jun, LI Wen-ying. Separation of mixed phenolic compounds from direct coal liquefaction[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(11): 1298-1304. shu

Separation of mixed phenolic compounds from direct coal liquefaction

  • Corresponding author: FENG Jie, fengjie@tyut.edu.cn
  • Received Date: 22 July 2019
    Revised Date: 30 September 2019

    Fund Project: The project was supported by the National Natural Science Foundation of China (U161020031) and National Key Research and Development Program of China (2017YFB0602803)National Key Research and Development Program of China 2017YFB0602803the National Natural Science Foundation of China U161020031

Figures(7)

  • The shape selection features of molecular sieve were used to efficiently separate the mixed phenols of oil fraction from coal direct liquefaction. In this paper, m-cresol and p-cresol were selected as the model compounds for coal liquified oil fraction. The pore structure of HZSM-5 adsorbent was adjusted by chemical liquid phase deposition method. Influence of ratio of silica to alumina and particle size of molecular sieve on the structural properties after modification were investigated. Considering the modified effect on adsorption and separation properties of cresol and p-cresol, a high-performance solid phase adsorbent was obtained, and was applied to separation of phenols in liquid oil from 180-190℃ fraction. The results show that when the molecular sieve has a silica-alumina ratio of 25 and a particle size of 3-5 μm, the pore structure adjustment effect of the molecular sieve is optimal. When the minimum amount of tetraethyl orthosilicate is 0.2 mL/g, the adsorption capacity of solid phase adsorption is 0.03 g/g, and the selectivity of p-cresol is greater than 95%. The selectivity to p-cresol is increased due to changes in the orifice regulation of the adsorbent on the outer surface deposits. Furthermore, using modified HZSM-5(1) adsorbent to separate the mixed phenols from real coal direct liquefied oil, the selectivity of phenol and p-cresol reached 100%.
  • 加载中
    1. [1]

      YU X Y, LIU C H, CHENG W P, YANG J G, HE M Y. Tert-butylation of p-cresol catalyzed by Al-MCM-41 mesoporous molecular sieves[J]. J Fuel Chem Technol, 2006,34(6):757-760.  

    2. [2]

      BAO Tie-zhu, ZENG Fan-li, CAO Xian, LI Zong-cheng. Study on separation and purification p-cresol by complexing extraction and crystallization: CN, 1127241A[P]. 1996-07-24.

    3. [3]

      HOU Ying, KUI Xian-ming, YANG Li-rong, WU Jian-ping, XU Gang. Preparation of high purity m-cresol by separation of urea and calcium bromide[J]. Chem React Eng Technol, 2011,27(2):178-182.  

    4. [4]

      SONG Xiao-min, CHEN Yuan-guang. Separation and purification of m-cresol[J]. Mod Chem Ind, 1997,17(6)2829.  

    5. [5]

      WANG Chun-rong. Study on the separation of meta-and para-cresol with alkyl product[J]. Appl Chem Ind, 2009,38(8):1196-1198. doi: 10.3969/j.issn.1671-3206.2009.08.033

    6. [6]

      LIU X M, ZHOU J X, GUO X W, LIU M, MA X L, SONG C S, WANG C. SO3H-functionalized Ionic liquids for selective alkylation of p-cresol with tert-butanol[J]. Ind Eng Chem Res, 2008,47(15):5298-5303. doi: 10.1021/ie070647t

    7. [7]

      ZARETSKIJ M I, YAKOVLEV I P, TYRLOV A A, CHARTOV E M. Extractive separation of isomers of cresol in fluid-fluid system[J]. Koks Khim, 2002(3):30-33.

    8. [8]

      SHIAU L D, HUANG C H, LIU K F. Separation of the cresol isomers by stripping crystallization[J]. Asia-Pac J Chem Eng, 2012,7(S1):S26-S31.  

    9. [9]

      TOMITA T, SUZUKI K, SATOMI Y, HIRAMINE T. Method for separation p-cresol: JP, 2007137787[P]. 2007-03-14.

    10. [10]

      NAMBA S, KANAI Y, SHOJI H, YASHIMA T. Separation of p-isomers from disubstituted benzenes by means of shape-selective adsorption on mordenite and ZSM-5 zeolites[J]. Zeolites, 1984,4(1):77-80. doi: 10.1016/0144-2449(84)90078-2

    11. [11]

      LE Ying-hong, TANG Yi, GAO Zi. Fine modulated zeolite pore size by chemical liquid phase deposition[J]. Acta Pet Sin (Pet Process Sect), 1997,13(1):30-35.  

    12. [12]

      NEUZIL R W, ROSBACK D H. Process for the separation of cresol isomers: US, 3969422[J]. 1976-07-13.

    13. [13]

      VIJAYAKUMAR J, CHIKKALA S K, MANDAL S, MAYADEVI S. Adsorption of cresols on zinc-aluminium hydroxides-A comparison with zeolite-X[J]. Sep Sci Technol, 2011,46(3):483-488. doi: 10.1080/01496395.2010.510494

    14. [14]

      YUE Y H, TANG Y, LIU Y, GAO Z. Chemical liquid deposition zeolites with controlled pore-opening size and shape-selective separation of isomers[J]. Ind Eng Chem Res, 1996,35(2):430-433.  

    15. [15]

      LE Ying-hong, TANG Yi, KAN Yong-zhi, GAO Zi. Pore size control of NaY zeolite by chemical liquid deposition and shape-selective separation[J]. Acta Chim Sin, 1996,54(6):591-597.  

    16. [16]

      LEE K R, TAN C S. Separation of m-and p-cresols in compressed propane using modified HZSM-5 pellets[J]. Ind Eng Chem Res, 2000,39(4):1035-1038. doi: 10.1021/ie990613o

    17. [17]

      GAO Zhen-nan, DU Shu-feng, LI Wen-bo, LI Ke-jian. Study on caustic washing process for extracting phenolics direct coal liquefaction product distillate[J]. J China Coal Soc, 2009,34(10):1383-1387. doi: 10.3321/j.issn:0253-9993.2009.10.017

    18. [18]

      EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal, 1993,141(2):347-354.  

    19. [19]

      MITSUYOSHI D, KUROIWA K, KATAOKA Y, NAKAGAWA T, KOSAKA M, NAKAMURA K, SUGANUMA S, ARAKI Y, KATADA N. Shape selectivity in toluene disproportionation into para-xylene generated by chemical vapor deposition of tetramethoxysilane on MFI zeolite catalyst[J]. Microporous Mesoporous Mater, 2017,242:118-126. doi: 10.1016/j.micromeso.2017.01.022

    20. [20]

      JIANG Lu. Fundamental research on the structure and viscosity of molten CaO-SiO2-P2O5-FeO Slag[D]. Chongqing: Chongqing University, 2015.

    21. [21]

      IVANDA M, CLASEN R, HORNFECK M, KIEFER W. Raman spectroscopy on SiO2 glasses sintered from nanosized particles[J]. J Non-Crys Solids, 2003,322:46-52. doi: 10.1016/S0022-3093(03)00172-8

    22. [22]

      HAO Tian-liang, CHEN Gang-jin. Study on relations between microstructures and electret properties of SiO2 film[J]. J Funct Mater, 2014,45(22):22091-22095. doi: 10.3969/j.issn.1001-9731.2014.22.019

  • 加载中
    1. [1]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    2. [2]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    5. [5]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    6. [6]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    7. [7]

      Xilin Zhao Xingyu Tu Zongxuan Li Rui Dong Bo Jiang Zhiwei Miao . Research Progress in Enantioselective Synthesis of Axial Chiral Compounds. University Chemistry, 2024, 39(11): 158-173. doi: 10.12461/PKU.DXHX202403106

    8. [8]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    9. [9]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    10. [10]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    11. [11]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    12. [12]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    13. [13]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    14. [14]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    15. [15]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    16. [16]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    17. [17]

      Wenkai Chen Yunjia Shen Xiangmeng Kong Yanli Zeng . Quantum Chemistry Calculation of Key Physical Quantity in Circularly Polarized Luminescence: Introducing an Exploratory Computational Chemistry Experiment. University Chemistry, 2025, 40(3): 83-91. doi: 10.12461/PKU.DXHX202405018

    18. [18]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    19. [19]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    20. [20]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

Metrics
  • PDF Downloads(7)
  • Abstract views(1173)
  • HTML views(202)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return