Citation: LIU Biao-biao, LIU Rong-hou, CAI Wen-fei, HE Yi-feng, CHAI Mei-yun. Effects of acetone and ethyl acetate additives on the storage stability of bio-oil[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(5): 529-534. shu

Effects of acetone and ethyl acetate additives on the storage stability of bio-oil

  • Corresponding author: LIU Rong-hou, liurhou@sjtu.edu.cn
  • Received Date: 15 December 2017
    Revised Date: 5 March 2018

    Fund Project: The project was supported by the National Natural Science Foundation of China (51776127)the National Natural Science Foundation of China 51776127

Figures(3)

  • Different ratios (3%, 6%, 9%, 12%, 15%) of acetone and ethyl acetate were added into crude bio-oil from fast pyrolysis to invest the effects of these two additives on the storage stability of bio-oil.The results show that both acetone and ethyl acetate can reduce the water content of bio-oil, and the ethyl acetate performes better than acetone.Compared to the blank control group, the water content decreases by 17.8%(from 16.32% to 13.41%) at 15% dose of ethyl acetate.The viscosities of bio-oil decrease a lot after adding acetone and ethyl acetate, and acetone shows more obvious effect.With the increasing of additive dose, the viscosity of bio-oil decreases.The viscosity of bio-oil decreases more than that of the control group by 37.20%, 57.78%, 71.92%, 79.79%, 84.67% with 3%, 6%, 9%, 12%, 15% dose of acetone, respectively.There is no significant difference in pH values among acetone and ethyl acetate addition groups and control group.According to the FT-IR and GC-MS analysis, it indicates that acetone and ethyl acetate inhibit the aging reactions of bio-oil during storage.
  • 加载中
    1. [1]

      OASMAA A, BELD B V D, SAARI P, ELLIOTT D C, SOLANTAUSTA Y. Norms, standards, and legislation for fast pyrolysis bio-oils from lignocellulosic biomass[J]. Energy Fuels, 2015,29(4):2471-2484. doi: 10.1021/acs.energyfuels.5b00026

    2. [2]

      OASMAA A, KÄLLI A, LINDFORS C, ELLIOTT D C, SPRINGER D, PEACOCKE C, CHIARAMONTI D. Guidelines for transportation, handling, and use of fast pyrolysis bio-oil. 1. Flammability and toxicity[J]. Energy Fuels, 2012,26(6):3864-3873. doi: 10.1021/ef300418d

    3. [3]

      OASMAA A, SUNDQVIST T, KUOPPALA E, GARCIA-PEREZ M, SOLANTAUSTA Y, LINDFORS C, PAASIKALLIO V. Controlling the phase stability of biomass fast pyrolysis bio-oils[J]. Energy Fuels, 2015,29(7):4373-4681. doi: 10.1021/acs.energyfuels.5b00607

    4. [4]

      XU Hai-sheng, WANG Bo, WANG Hao. Research progress of catalysts for hydrodeoxygenation of bio-oils[J]. Mod Chem Ind, 2017(1):50-54.  

    5. [5]

      SUI Hai-qing, LI Pan, WANG Xian-hua, ZOU Jun, LI Xiang-peng, CHEN Han-ping. Influence on bio-oil by fractional condensation of biomass pyrolysis vapor[J]. J Chem Ind Eng, 2015,66(10):4138-4144.  

    6. [6]

      HAN Ping, JIANG En-chen, WANG Ming-feng, LI Shi-bo, QIN Li-yuan. Research progress in fractional condensation of bio-oil[J]. Trans Chin Soc Agric Mach, 2016,47(5):164-170. doi: 10.6041/j.issn.1000-1298.2016.05.022

    7. [7]

      LIU Xu, ZHU Xi-feng. Effect of mixed alcohol on stability of bio-oil[J]. Acta Energ Sol Sin, 2015,36(6):1391-1396.  

    8. [8]

      WU Xiao-wu, LIU Rong-hou, YIN Ren-zhan, FEI Wen-ting. Effect of two kinds of additive at different doses on the stability of bio-oil[J]. Acta Energ Sol Sin, 2014,35(1):1-7.  

    9. [9]

      FEI Wen-ting, LIU Rong-hou, CHENG Zhi-cai. FT-IR and GC-MS analyses of the bio-oil adding propylene glycol during stored procedure[J]. Renew Energy, 2013,31(9):83-87.  

    10. [10]

      LIU Rong-hou. Renewable Energy Engineering[M]. Beijing:Science Press, 2016.

    11. [11]

      BRIDGWATER A V. Principles and practice of biomass fast pyrolysis processes for liquids[J]. J Anal Appl Pyrolysis, 1999,51(1/2):3-22.  

    12. [12]

      OASMAA A, KUOPPALA E, GUST S, SOLANTAUSTA Y. Fast pyrolysis of forestry residue. 1. Effect of extractives on phase separation of pyrolysis liquids[J]. Energy Fuels, 2003,17(1):1-12. doi: 10.1021/ef020088x

    13. [13]

      FRATINI E, BONINI M, OASMAA A, SOLANTAUSTA Y, TEIXEIRA J, BAGLIONI P. SANS analysis of the microstructural evolution during the aging of pyrolysis oils from biomass[J]. Langmuir, 2006,22(1):306-312. doi: 10.1021/la051990a

    14. [14]

      OH S J, CHOI G G, KIM J S. Production of acetic acid-rich bio-oils from the fast pyrolysis of biomass and synthesis of calcium magnesium acetate deicer[J]. J Anal Appl Pyrolysis, 2017(124):122-129.  

    15. [15]

      ALSBOU E, HELLEUR B. Accelerated aging of bio-oil from fast pyrolysis of hardwood[J]. Energy Fuels, 2014,28(5):3224-3235. doi: 10.1021/ef500399n

    16. [16]

      BHATTACHARYA P, INGRAM L, HASSAN E B, STEELE P. Effect of acid catalysts on the reaction of methanol and other alcohols with hydroxy acetaldehyde in bio-oil[J]. Abstr Pap Am Chem Soc, 2009(54):628-630.  

    17. [17]

      HILTEN R N, DAS K C. Comparison of three accelerated aging procedures to assess bio-oil stability[J]. Fuel, 2010,89(10):2741-2749. doi: 10.1016/j.fuel.2010.03.033

    18. [18]

      XU F, XU Y, LU R, SHENG G, YU H. Elucidation of the thermal deterioration mechanism of bio-oil pyrolyzed from rice husk using fourier transform infrared spectroscopy[J]. J Agr Food Chem, 2011,59(17):9243-9249. doi: 10.1021/jf202198u

    19. [19]

      LAO Zhe, WEI Li-li, JIANG En-yuan. Research progress on application of GC-MS[J]. Med Front, 2017,7(10):7-8.  

    20. [20]

      LIU R, DENG C, WANG J. Fast pyrolysis of corn straw for bio-oil production in a bench-scale fluidized bed reactor[J]. Energ Sources Part A, 2009,32(1):10-19. doi: 10.1080/15567030802094037

  • 加载中
    1. [1]

      Shitao Fu Jianming Zhang Cancan Cao Zhihui Wang Chaoran Qin Jian Zhang Hui Xiong . Study on the Stability of Purple Cabbage Pigment. University Chemistry, 2024, 39(4): 367-372. doi: 10.3866/PKU.DXHX202401059

    2. [2]

      Jiaxi Xu Yuan Ma . Influence of Hyperconjugation on the Stability and Stable Conformation of Ethane, Hydrazine, and Hydrogen Peroxide. University Chemistry, 2024, 39(11): 374-377. doi: 10.3866/PKU.DXHX202402049

    3. [3]

      Mingxuan Qi Lanyu Jin Honghe Yao Zipeng Xu Teng Cheng Qi Chen Cheng Zhu Yang Bai . 钙钛矿太阳能电池在反向偏压下的电学失效及稳定性研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100088-. doi: 10.1016/j.actphy.2025.100088

    4. [4]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    5. [5]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    6. [6]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    7. [7]

      Yihan Xue Xue Han Jie Zhang Xiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-. doi: 10.1016/j.actphy.2025.100072

    8. [8]

      Shuying Zhu Shuting Wu Ou Zheng . Improvement and Expansion of the Experiment for Determining the Rate Constant of the Saponification Reaction of Ethyl Acetate. University Chemistry, 2024, 39(4): 107-113. doi: 10.3866/PKU.DXHX202310117

    9. [9]

      Ruitong Zhang Zhiqiang Zeng Xiaoguang Zhang . Improvement of Ethyl Acetate Saponification Reaction and Iodine Clock Reaction Experiments. University Chemistry, 2024, 39(8): 197-203. doi: 10.3866/PKU.DXHX202312004

    10. [10]

      Jiaojiao Yu Bo Sun Na Li Cong Wen Wei Li . Improvement of Classical Organic Experiment Based on the “Reverse-Step Optimization Method”: Taking Synthesis of Ethyl Acetate as an Example. University Chemistry, 2025, 40(3): 333-341. doi: 10.12461/PKU.DXHX202405177

    11. [11]

      Xuyang Wang Jiapei Zhang Lirui Zhao Xiaowen Xu Guizheng Zou Bin Zhang . Theoretical Study on the Structure and Stability of Copper-Ammonia Coordination Ions. University Chemistry, 2024, 39(3): 384-389. doi: 10.3866/PKU.DXHX202309065

    12. [12]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    13. [13]

      Yingtong Shi Guotong Xu Guizeng Liang Di Lan Siyuan Zhang Yanru Wang Daohao Li Guanglei Wu . PEG-VN改性PP隔膜用于高稳定性高效率锂硫电池. Acta Physico-Chimica Sinica, 2025, 41(7): 100082-. doi: 10.1016/j.actphy.2025.100082

    14. [14]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    15. [15]

      Xuewei BACheng CHENGHuaikang ZHANGDeqing ZHANGShuhua LI . Preparation and luminescent performance of Sr1-xZrSi2O7xDy3+ phosphor with high thermal stability. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 357-364. doi: 10.11862/CJIC.20240096

    16. [16]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    17. [17]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    18. [18]

      Zeyi Yan Ruitao Liu Xinyu Qi Yuxiang Zhang Lulu Sun Xiangyuan Li Anchao Feng . Exploration of Suspension Polymerization: Preparation and Fluorescence Stability of Perovskite Polystyrene Microbeads. University Chemistry, 2025, 40(4): 72-79. doi: 10.12461/PKU.DXHX202405110

    19. [19]

      Jie WUZhihong LUOXiaoli CHENFangfang XIONGLi CHENBiao ZHANGBin SHIQuansheng OUYANGJiaojing SHAO . Critical roles of AlPO4 coating in enhancing cycling stability and rate capability of high voltage LiNi0.5Mn1.5O4 cathode materials. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 948-958. doi: 10.11862/CJIC.20240400

    20. [20]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

Metrics
  • PDF Downloads(3)
  • Abstract views(1284)
  • HTML views(182)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return