Citation: Lu Xin, Zhang Haifeng, Li Yan. Research Progress in the Analysis Technology of AHLs in Membrane Bioreactor[J]. Chemistry, ;2017, 80(3): 260-265. shu

Research Progress in the Analysis Technology of AHLs in Membrane Bioreactor

  • Corresponding author: Zhang Haifeng, zhftju@163.com
  • Received Date: 29 June 2016
    Accepted Date: 12 November 2016

Figures(1)

  • Membrane biofouling has still been a major problem in membrane bioreactor (MBR) for wastewater treatment. Recently, the quorum quenching technology based on quorum sensing might been an innovative and effective strategy for controlling membrane biofouling. And thus, the recognition and analysis for the signal molecules would play a key role in the application of quorum quenching in dealing with membrane biofouling, which will provide a better understanding of the mechanism of quorum quenching technology in MBR. This paper clarified the main N-acyl homoserine lactones (AHLs) and summarized analytical methods in terms of qualitative and quantitative perspectives, respectively. The mechanism of quorum sensing and AHLs in activated sludge was introduced in details. Further, the qualitative and quantitative analysis methods of AHLs were summarized, and finally, the applications of recognition and analytical technology with respect to AHLs were proposed in MBR.
  • 加载中
    1. [1]

       

    2. [2]

      L Malaeb, P Le-Clech, J S Vrouwenvelder et al. Water Res., 2013, 47(15):5447-5463. 

    3. [3]

      H Oh, K Yeon, C Yang et al. Environ. Sci. Technol., 2012, 46(9):4877-4884. 

    4. [4]

       

    5. [5]

      J Kim, D Choi, K Yeon et al. Environ. Sci. Technol., 2011, 45(4):1601-1607. 

    6. [6]

      H Lin, M Zhang, F Wang et al. J. Membr. Sci., 2014, 460(9):110-125.

    7. [7]

    8. [8]

      M F Siddiqui, M Rzechowicz, W Harvey et al. J. Water Proce. Eng., 2015, 7:112-122. 

    9. [9]

      W Liu, W Cai, A Ma et al. J. Power Sources, 2015, 284:56-59. 

    10. [10]

      V C Kalia, P Kumar, S K T Pandian et al. Springer Handb. Mar. Biotechnol., 2015:431-439.

    11. [11]

      Y Xiong, Y Liu. Microb. Biotechnol., 2010, 86(3):825-837. 

    12. [12]

      C Solano, M Echeverz, I Lasa. Curr. Opin. Microbiol., 2014, 18(4):96-104.

    13. [13]

      S Brameyer, H B Bode, R Heermann. Trends Microbiol., 2015, 23(9):521-523. 

    14. [14]

      T Praneenararat, T M J Beary, A S Breitbach et al. Bioorg. Med. Chem. Lett., 2011, 21(17):5054-5057. 

    15. [15]

      J Huang, Y Shi, G Zeng et al. Chemosphere, 2016, 157:137-151. 

    16. [16]

      T R I Cataldi, G Bianco, L Palazzo et al. Anal. Biochem., 2007, 361(2):226-235. 

    17. [17]

      B Lee, K M Yeon, J Shim et al. Biomacromolecules, 2014, 15(4):1153-1159. 

    18. [18]

      S Swift, M J Lynch, L Fish et al. Infect. Immun., 1999, 67(10):5192-5199.

    19. [19]

      S Y Park, H O Kang, H S Jang et al. Appl. Environ. Microb., 2005, 71(5):2632-2641. 

    20. [20]

      V Thiel, B Kunze, P Verma et al. ChemBioChem, 2009, 10(11):1861-1868. 

    21. [21]

      E O Buton, H W Read, M C Pellitteri et al. Appl. Environ. Microb., 2005, 71(8):4906-4909 

    22. [22]

      S Xia, L Zhou, Z Zhang et al. J. Environ. Sci., 2012, 24(12):2035-2040. 

    23. [23]

      T Defoirdt, N Boon, P Bossier et al. Aquaculture, 2004, 240(1-4):69-88. 

    24. [24]

      D Jahangir, H S Oh, S R Kim et al. J. Membr. Sci., 2012, 411-412(9):130-136.

    25. [25]

      J Lv, Y Wang, C Zhong et al. Bioresource Technol., 2014, 152(1):53-58.

    26. [26]

      L Steindler, V Venturi. FEMS, 2007, 266(1):1-9. 

    27. [27]

      T T Ren, X Y Li, H Q Yu. Bioresource Technol., 2013, 129(2):655-658.

    28. [28]

      Y Huang, Y Zeng, Z Yu et al. Bioresource Technol., 2013, 148(7):311-316. 

    29. [29]

      T Maqbool, S J Khan, H Waheed et al. J. Membr. Sci., 2015, 483:75-83. 

    30. [30]

      S Y Lim, S Kim, K M Yeon et al. Desalination, 2012, 287(3):209-215.

    31. [31]

      M F Siddiqui, M Sakinah, L Singh et al. J. Biotechnol., 2012, 161(3):190-197. 

    32. [32]

      A Kumari, P Pasini, S Daunert. Anal. Bioanal. Chem., 2008, 391(5):1619-1627. 

    33. [33]

      S R Kim, H S Oh, S J Jo et al. Environ. Sci. Technnol., 2013, 47(2):836-842. 

    34. [34]

      K M Yeon, W S Cheong, H S Oh et al. Environ. Sci. Technol., 2009, 43(2):380-385. 

    35. [35]

      H Waheed, I Hashmi, S J Khan et al. Int. Biodeter. Biodegr., 2015, 113:66-73

    36. [36]

      K H Nealson, T Platt, J W Hastings. J. Bacterial., 1970, 104(1):313-322.

    37. [37]

      Q Q Zhan, K P Ye, H H W et al. LWT-Food Sci. Technol., 2014, 57(1):230-235. 

    38. [38]

      N A Weerasekara, K H Choo, C H Lee. Water Res., 2014, 67:1-10. 

    39. [39]

      H S Oh, S R Kim, W S Cheong et al. Appl. Microbiol. Biotechnol., 2013, 97(23):10223-10231 

    40. [40]

      Y Li, W Hao, J Lv et al. Bioresource Technol., 2014, 159(5):305-310.

    41. [41]

      S R Kim, K B Lee, J E Kim et al. J. Membr. Sci., 2015, 473:109-117. 

    42. [42]

      J Charlesworth, O Kimyon, M Manefield et al. J. Microb. Meth., 2015, 118:164-167. 

    43. [43]

      J A Soares, B M Ahmer. Curr. Opin. Microbiol., 2011, 14(2):188-193. 

    44. [44]

       

    45. [45]

       

    46. [46]

       

    47. [47]

      X Li, A Fekete, M Englmann et al. J. Chromatogr. A, 2006, 1134(1-2):186-193. 

    48. [48]

      M Englmann, A Fekete, C Kuttler et al. J. Chromatogr. A, 2007, 1160(1-2):184-193. 

    49. [49]

       

    50. [50]

      L Katebian, E Gomez, L Skillman et al. Desalination, 2016, 393:135-143. 

  • 加载中
    1. [1]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    2. [2]

      Xiao Liu Guangzhong Cao Mingli Gao Hong Wu Hongyan Feng Chenxiao Jiang Tongwen Xu . Seawater Salinity Gradient Energy’s Job Application in the Field of Membranes. University Chemistry, 2024, 39(9): 279-282. doi: 10.3866/PKU.DXHX202306043

    3. [3]

      Shuyu Liu Xiaomin Sun Bohan Song Gaofeng Zeng Bingbing Du Chongshen Guo Cong Wang Lei Wang . Design and Fabrication of Phospholipid-Vesicle-based Artificial Cells towards Biomedical Applications. University Chemistry, 2024, 39(11): 182-188. doi: 10.12461/PKU.DXHX202404113

    4. [4]

      Caixia Lin Ting Liu Zhaojiang Shi Hong Yan Keyin Ye Yaofeng Yuan . Innovative Experiment of Electrochemical Dearomative Spirocyclization of N-Acyl Sulfonamides. University Chemistry, 2025, 40(4): 359-366. doi: 10.12461/PKU.DXHX202406107

    5. [5]

      Jingjing LiuAoqi WeiHao ZhangShuwang Duo . SnS2-based heterostructures: advances in photocatalytic and gas-sensing applications. Acta Physico-Chimica Sinica, 2025, 41(12): 100185-0. doi: 10.1016/j.actphy.2025.100185

    6. [6]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    7. [7]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    8. [8]

      Lan Ma Cailu He Ziqi Liu Yaohan Yang Qingxia Ming Xue Luo Tianfeng He Liyun Zhang . Magical Surface Chemistry: Fabrication and Application of Oil-Water Separation Membranes. University Chemistry, 2024, 39(5): 218-227. doi: 10.3866/PKU.DXHX202311046

    9. [9]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    10. [10]

      Tianqi BaiKun HuangFachen LiuRuochen ShiWencai RenSongfeng PeiPeng GaoZhongfan Liu . Nanoscale Mechanism of Microstructure-Dependent Thermal Diffusivity in Thick Graphene Sheets. Acta Physico-Chimica Sinica, 2025, 41(3): 2404024-0. doi: 10.3866/PKU.WHXB202404024

    11. [11]

      Jiahao LuXin MingYingjun LiuYuanyuan HaoPeijuan ZhangSonghan ShiYi MaoYue YuShengying CaiZhen XuChao Gao . High-Precision and Reliable Thermal Conductivity Measurement for Graphene Films Based on an Improved Steady-State Electric Heating Method. Acta Physico-Chimica Sinica, 2025, 41(5): 100045-0. doi: 10.1016/j.actphy.2025.100045

    12. [12]

      Kangjuan ChengChunxiao LiuYoupeng WangQiu JiangTingting ZhengXu LiChuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112

    13. [13]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    14. [14]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    15. [15]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    16. [16]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    17. [17]

      Lirui Shen Kun Liu Ying Yang Dongwan Li Wengui Chang . Synthesis and Application of Decanedioic Acid-N-Hydroxysuccinimide Ester: Exploration of Teaching Reform in Comprehensive Applied Chemistry Experiment. University Chemistry, 2024, 39(8): 212-220. doi: 10.3866/PKU.DXHX202312035

    18. [18]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    19. [19]

      Hong Lu Yidie Zhai Xingxing Cheng Yujia Gao Qing Wei Hao Wei . Advancements and Expansions in the Proline-Catalyzed Asymmetric Aldol Reaction. University Chemistry, 2024, 39(5): 154-162. doi: 10.3866/PKU.DXHX202310074

    20. [20]

      Dafa Chen Haiping Xia . From Pollutant to Metal-Centred Annulene: The Transformation Journey of a Little Osmium Atom. University Chemistry, 2025, 40(10): 156-160. doi: 10.12461/PKU.DXHX202508094

Metrics
  • PDF Downloads(11)
  • Abstract views(1449)
  • HTML views(225)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return