Citation: SUN Zhao-lin, HUI Yu, YANG Ye, QIN Yu-cai, ZHANG Li, ZHANG Le, JIA Wei-ming, ZU Yun, SONG Li-juan. Mechanism and effects of cerium content on the nickel olerance of CeUSY zeolite[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(7): 856-863. shu

Mechanism and effects of cerium content on the nickel olerance of CeUSY zeolite

  • Corresponding author: SONG Li-juan, lsong56@263.net
  • Received Date: 24 February 2018
    Revised Date: 23 May 2018

    Fund Project: the National Natural Science Foundation of China 21376114The project was supported by the National Natural Science Foundation of China (U1662135, 21376114)the National Natural Science Foundation of China U1662135

Figures(5)

  • The CeUSY zeolites loaded with Ce were prepared by liquid phase ion exchange method, and the Ni contamination was conducted by Mitchell impregnation method. The texture properties were characterized by inductively coupled plasma atomic emission spectrometry (ICP-AES), X-ray diffraction (XRD) and N2 adsorption. Moreover, the nickel tolerance was evaluated by the MAT evaluation device. The results show that CeUSY zeolites with different Ce contents possess a nickel tolerance performance varying in a volcano type with the increase of Ce content. Through the H2-TPR and Py-FTIR characterization of CeUSY zeolite before and after Ni contamination, it is evident that the change in Ce species morphology is one of the reasons affecting nickel tolerances. It is thought that the interaction between Ce(OH)2+ and Ni(OH)+ in the SOD cages of the CeUSY zeolite results in a loss of H2O molecule to form a stable Ce3+-O-Ni2+ structure at high temperature, which hinders the combination of Ni species with the framework aluminum to prevent the destruction of the Brønsted acid sites in CeUSY zeolite and effectively inhibits the formation of reducible NiO species. However, with the increase of the content of Ce3+, the part of the introduced Ce would happen to self-assemble in the zeolites as multinuclear hydroxylated species which interacts weakly with Ni2+ species compared to mononuclear species and then reduces the nickel tolerance.
  • 加载中
    1. [1]

      VOGT E T C, WECKHUYSEN B M. Fluid catalytic cracking:Recent developments on the grand old lady of zeolite catalysis[J]. Chem Soc Rev, 2015,44(20):7342-7370. doi: 10.1039/C5CS00376H

    2. [2]

      AKAH A. Application of rare earths in fluid catalytic cracking:A review[J]. J Rare Earths, 2017,35(10):941-956. doi: 10.1016/S1002-0721(17)60998-0

    3. [3]

      SUZUKI M, TSUTSUMI K, TAKAHASHI H, SAITO Y. Tpr study on reducibility of nickel ions in zeolite Y[J]. Zeolites, 1989,9(2):98-103. doi: 10.1016/0144-2449(89)90056-0

    4. [4]

      LIU Xiao-dong. Study on the migration of passive components and the study of new solid passivation agent[D]. Beijing: Petrochemical Engineering Research Institute, 2001. 

    5. [5]

      SEO S M, PARK M, CHUNG D Y, LIM W T. Preparation of excessively Ni2+-exchanged zeolite Y (FAU, Si/Al=1.70) and its single-crystal structure[J]. J Porous Mater, 2014,21(5):521-530. doi: 10.1007/s10934-014-9799-2

    6. [6]

      LUENGNARUEMITCHAI A, KAENGSILALAI A. Activity of different zeolite-supported Ni catalysts for methane reforming with carbon dioxide[J]. Chem Eng J, 2008,144(1):96-102. doi: 10.1016/j.cej.2008.05.023

    7. [7]

      YANG S J, CHEN Y W, LI C. Vanadium-nickel interaction in REY zeolite[J]. Appl Catal A:Gen, 1994,117:109-123. doi: 10.1016/0926-860X(94)85092-5

    8. [8]

      POMPEA R, JÄRÓASB S, VANNERBERGB N G. On the interaction of vanadium and nickel compounds with cracking catalyst[J]. Appl Catal, 1984,13:171-179. doi: 10.1016/S0166-9834(00)83335-7

    9. [9]

      GUISNET M, MAGNOUX P. Coking and deactivation of zeolites:Influence of the pore structure[J]. Appl Catals, 1989,54(1):1-27. doi: 10.1016/S0166-9834(00)82350-7

    10. [10]

      ESCOBAR A S, PINTO F V, CERQUEIRA H S, PEREIRA M M. Role of nickel and vanadium over USY and RE-USY coke formation[J]. Appl Catal A:Gen, 2006,315:68-73. doi: 10.1016/j.apcata.2006.09.004

    11. [11]

      SOUSA-AGUIAR E F, TRIGUEIRO F E, ZOTIN F M Z. The role of rare earth elements in zeolites and cracking catalysts[J]. Catal Today, 2013,218:115-122.  

    12. [12]

      WALLENSTEIN D, SCHÄFER K, HARDING R H. Impact of rare earth concentration and matrix modification in FCC catalysts on their catalytic performance in a wide array of operational parameters[J]. Appl Catal A:Gen, 2015,502:27-41. doi: 10.1016/j.apcata.2015.05.010

    13. [13]

      WEI Xiao-Li, MAO An-guo, SONG Bao-mei. Effect of the ways of nickel contamination on the catalytic cracking performance of FCC catalyst[J]. Pet Process Petrochem, 2008,39(6):6-10.  

    14. [14]

      LI D, LI F, REN J, SUN Y H. Rare earth-modified bifunctional Ni/HY catalysts[J]. Appl Catal A:Gen, 2003,241(1):15-24.  

    15. [15]

      WESTERMANNA A, AZAMBREB B, BACARIZAA M C, GRAÇAA I, RIBEIROA M F, LOPESA J M, HENRIQUESA C. The promoting effect of Ce in the CO2 methanation performances on NiUSY zeolite:A FT-IR In Situ/Operando study[J]. Catal Today, 2017,283:74-81. doi: 10.1016/j.cattod.2016.02.031

    16. [16]

      LIU Pu-sheng, ZHANG Zhong-dong, GAO Xiong-hou. Effects of rare earth concent on catalytic properties of Y zeolite[J]. Acta Pet Sin (Pet Process Sect), 2010,S1:107-111.  

    17. [17]

      GAO X, QIN Z, WANG B, ZHAO X, LI J, ZHAO H, LIU H, SHEN B. High silica REHY zeolite with low rare earth loading as high-performance catalyst for heavy oil conversion[J]. Appl Catal A:Gen, 2012,413:254-260.  

    18. [18]

      ZHANG Chang, QIN Yu-cai, GAO Xiong-hou, ZHANG Hai-tao, MO Zhou-sheng, CHU Chun-yu, ZHANG Xiao-tong, SONG Li-juan. Modulation of the acidity and catalytic conversion properties of y zeolites modified by cerium cations[J]. Acta Phys-Chim Sin, 2015,31(2):344-352. doi: 10.3866/PKU.WHXB201412163

    19. [19]

      ZU Y, QIN Y, GAO X, LIU H H, ZHANG X T, ZHANG J D, SONG L J. Insight into the correlation between the adsorption-transformation behaviors of methylthiophenes and the active sites of zeolites Y[J]. Appl Catal B:Environ, 2017,203:96-107. doi: 10.1016/j.apcatb.2016.10.008

    20. [20]

      ZHANG L, QIN Y, JI D, CHU G, GAO X, ZHANG X T, SONG L J. Effect of cerium ions initial distribution on the crystalline structure and catalytic performance of CeY zeolite[J]. J Rare Earths, 2017,35(8):791-799. doi: 10.1016/S1002-0721(17)60978-5

    21. [21]

      YU Shan-qing, TIAN Hui-ping, ZHU Yu-xia, DAI Zhen-yu, LONG Jun. Mechanism of rare earth cations on the stability and acidity of Y zeolites[J]. Acta Phys-Chim Sin, 2011,27(11):2528-2534. doi: 10.3866/PKU.WHXB20111101

    22. [22]

      LI J, ZENG P, ZHAO L, REN S, GUO Q, ZHAO H, WANG B, LIU H, PANG X, GAO X, SHEN B. Tuning of acidity in CeY catalytic cracking catalysts by controlling the migration of Ce in the ion exchange step through valence changes[J]. J Catal, 2015,329:441-448. doi: 10.1016/j.jcat.2015.06.012

    23. [23]

      DU X, ZHANG H, LI X, TAN Z, LIU H, GAO X. Cation location and migration in lanthanum-exchanged NaY zeolite[J]. Chin J Catal, 2013,34(8):1599-1607. doi: 10.1016/S1872-2067(11)60622-6

    24. [24]

      DU X, GAO X, ZHANG H, LI X, LIU P. Effect of cation location on the hydrothermal stability of rare earth-exchanged Y zeolites[J]. Catal Commun, 2013,35:17-22. doi: 10.1016/j.catcom.2013.02.010

    25. [25]

      DENG C, ZHANG J, DONG L, HUANG M, LI B, JIN G, GAO J, ZHANG F, FAN M, ZHANG L, GONG Y. The effect of positioning cations on acidity and stability of the framework structure of Y zeolite[J]. Sci Rep-UK, 2016,623382. doi: 10.1038/srep23382

    26. [26]

      SCHUÜβLER F, PIDKO E A, KOLVENBACH R, SIEVERS C, HENSEN E J, VAN SANTEN R A, LERCHER J A. Nature and location of cationic lanthanum species in high alumina containing faujasite type zeolites[J]. J Phys Chem C, 2011,115(44):21763-21776. doi: 10.1021/jp205771e

    27. [27]

      MITCHELL B R. Metal contamination of cracking catalysts. 1. Synthetic metals deposition on Fresh catalysts[J]. Ind Eng Chem Prod Res Dev, 1980,19:209-213. doi: 10.1021/i360074a015

    28. [28]

      WANG Lin, SUN Xue-qin, CHEN Shu-kun, CAO Geng-zhen, QU Zhao-xia, YANG Yi-qing, WANG Bao-jie. Influence of nickel depositon on catalytic cracking activity and gasoline properties[J]. Appl Chem Ind, 2012,41(11):1960-1962.  

    29. [29]

      ZHENG X, WU S, WANG S, WANG S. The preparation and catalytic behavior of copper-cerium oxide catalysts for low-temperature carbon monoxide oxidation[J]. Appl Catal A:Gen, 2005,283(1):217-223.  

    30. [30]

      LIU Hui-Min, LI Yu-ming, WU Hao, YANG Wei-wei, HE De-hua. Effects of Nd, Ce, and La modification on catalytic performance of Ni/SBA-15 catalyst in CO2 reforming of CH4[J]. Chin J Catal, 2014,35(9):1520-1528.  

    31. [31]

      SONG H, WAN X, DAI M, ZHANG J, LI F, SONG H. Deep desulfurization of model gasoline by selective adsorption over Cu-Ce bimetal ion-exchanged Y zeolite[J]. Fuel Process Technol, 2013,116:52-62. doi: 10.1016/j.fuproc.2013.04.017

    32. [32]

      GRACA I, GONZÁLEZ L V, BACARIZA M C, FERNANDES A, HENRIQUES C, LOPES J M, RIBEIRO M F. CO2 hydrogenation into CH4 on NiHNaUSY zeolites[J]. Appl Catal B:Environ, 2014,147:101-110. doi: 10.1016/j.apcatb.2013.08.010

    33. [33]

      ZHANG S H, MURATSUGU S, ISHIGURO N, TADA M. Ceria-doped Ni/SBA-16 catalysts for dry reforming of methane[J]. ACS Catal, 2013,3(8):1855-1864. doi: 10.1021/cs400159w

  • 加载中
    1. [1]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    2. [2]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    3. [3]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    4. [4]

      Liang TANGJingfei NIKang XIAOXiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139

    5. [5]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    6. [6]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    7. [7]

      Keweiyang Zhang Zihan Fan Liyuan Xiao Haitao Long Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084

    8. [8]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    9. [9]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    10. [10]

      Wen YANGDidi WANGZiyi HUANGYaping ZHOUYanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276

    11. [11]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    12. [12]

      Yuting ZHANGZunyi LIUNing LIDongqiang ZHANGShiling ZHAOYu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204

    13. [13]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    14. [14]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    15. [15]

      Ming Li Zhaoyin Li Mengzhu Liu Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085

    16. [16]

      Gonglan Ye Xia Yin Feng Xu Peng Yang Yingpeng Wu Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071

    17. [17]

      Quanguo Zhai Peng Zhang Wenyu Yuan Ying Wang Shu'ni Li Mancheng Hu Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065

    18. [18]

      Li Zhou Dongyan Tang Yunchen Du . Focusing on the Cultivation of Outstanding Talents: A “Five in One” Approach to Promoting the Construction of Chemical Experimental and Practical Teaching System. University Chemistry, 2024, 39(7): 121-128. doi: 10.12461/PKU.DXHX202405037

    19. [19]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    20. [20]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

Metrics
  • PDF Downloads(3)
  • Abstract views(2102)
  • HTML views(90)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return