Mechanism and effects of cerium content on the nickel olerance of CeUSY zeolite
- Corresponding author: SONG Li-juan, lsong56@263.net
Citation:
SUN Zhao-lin, HUI Yu, YANG Ye, QIN Yu-cai, ZHANG Li, ZHANG Le, JIA Wei-ming, ZU Yun, SONG Li-juan. Mechanism and effects of cerium content on the nickel olerance of CeUSY zeolite[J]. Journal of Fuel Chemistry and Technology,
;2018, 46(7): 856-863.
VOGT E T C, WECKHUYSEN B M. Fluid catalytic cracking:Recent developments on the grand old lady of zeolite catalysis[J]. Chem Soc Rev, 2015,44(20):7342-7370. doi: 10.1039/C5CS00376H
AKAH A. Application of rare earths in fluid catalytic cracking:A review[J]. J Rare Earths, 2017,35(10):941-956. doi: 10.1016/S1002-0721(17)60998-0
SUZUKI M, TSUTSUMI K, TAKAHASHI H, SAITO Y. Tpr study on reducibility of nickel ions in zeolite Y[J]. Zeolites, 1989,9(2):98-103. doi: 10.1016/0144-2449(89)90056-0
LIU Xiao-dong. Study on the migration of passive components and the study of new solid passivation agent[D]. Beijing: Petrochemical Engineering Research Institute, 2001.
SEO S M, PARK M, CHUNG D Y, LIM W T. Preparation of excessively Ni2+-exchanged zeolite Y (FAU, Si/Al=1.70) and its single-crystal structure[J]. J Porous Mater, 2014,21(5):521-530. doi: 10.1007/s10934-014-9799-2
LUENGNARUEMITCHAI A, KAENGSILALAI A. Activity of different zeolite-supported Ni catalysts for methane reforming with carbon dioxide[J]. Chem Eng J, 2008,144(1):96-102. doi: 10.1016/j.cej.2008.05.023
YANG S J, CHEN Y W, LI C. Vanadium-nickel interaction in REY zeolite[J]. Appl Catal A:Gen, 1994,117:109-123. doi: 10.1016/0926-860X(94)85092-5
POMPEA R, JÄRÓASB S, VANNERBERGB N G. On the interaction of vanadium and nickel compounds with cracking catalyst[J]. Appl Catal, 1984,13:171-179. doi: 10.1016/S0166-9834(00)83335-7
GUISNET M, MAGNOUX P. Coking and deactivation of zeolites:Influence of the pore structure[J]. Appl Catals, 1989,54(1):1-27. doi: 10.1016/S0166-9834(00)82350-7
ESCOBAR A S, PINTO F V, CERQUEIRA H S, PEREIRA M M. Role of nickel and vanadium over USY and RE-USY coke formation[J]. Appl Catal A:Gen, 2006,315:68-73. doi: 10.1016/j.apcata.2006.09.004
SOUSA-AGUIAR E F, TRIGUEIRO F E, ZOTIN F M Z. The role of rare earth elements in zeolites and cracking catalysts[J]. Catal Today, 2013,218:115-122.
WALLENSTEIN D, SCHÄFER K, HARDING R H. Impact of rare earth concentration and matrix modification in FCC catalysts on their catalytic performance in a wide array of operational parameters[J]. Appl Catal A:Gen, 2015,502:27-41. doi: 10.1016/j.apcata.2015.05.010
WEI Xiao-Li, MAO An-guo, SONG Bao-mei. Effect of the ways of nickel contamination on the catalytic cracking performance of FCC catalyst[J]. Pet Process Petrochem, 2008,39(6):6-10.
LI D, LI F, REN J, SUN Y H. Rare earth-modified bifunctional Ni/HY catalysts[J]. Appl Catal A:Gen, 2003,241(1):15-24.
WESTERMANNA A, AZAMBREB B, BACARIZAA M C, GRAÇAA I, RIBEIROA M F, LOPESA J M, HENRIQUESA C. The promoting effect of Ce in the CO2 methanation performances on NiUSY zeolite:A FT-IR In Situ/Operando study[J]. Catal Today, 2017,283:74-81. doi: 10.1016/j.cattod.2016.02.031
LIU Pu-sheng, ZHANG Zhong-dong, GAO Xiong-hou. Effects of rare earth concent on catalytic properties of Y zeolite[J]. Acta Pet Sin (Pet Process Sect), 2010,S1:107-111.
GAO X, QIN Z, WANG B, ZHAO X, LI J, ZHAO H, LIU H, SHEN B. High silica REHY zeolite with low rare earth loading as high-performance catalyst for heavy oil conversion[J]. Appl Catal A:Gen, 2012,413:254-260.
ZHANG Chang, QIN Yu-cai, GAO Xiong-hou, ZHANG Hai-tao, MO Zhou-sheng, CHU Chun-yu, ZHANG Xiao-tong, SONG Li-juan. Modulation of the acidity and catalytic conversion properties of y zeolites modified by cerium cations[J]. Acta Phys-Chim Sin, 2015,31(2):344-352. doi: 10.3866/PKU.WHXB201412163
ZU Y, QIN Y, GAO X, LIU H H, ZHANG X T, ZHANG J D, SONG L J. Insight into the correlation between the adsorption-transformation behaviors of methylthiophenes and the active sites of zeolites Y[J]. Appl Catal B:Environ, 2017,203:96-107. doi: 10.1016/j.apcatb.2016.10.008
ZHANG L, QIN Y, JI D, CHU G, GAO X, ZHANG X T, SONG L J. Effect of cerium ions initial distribution on the crystalline structure and catalytic performance of CeY zeolite[J]. J Rare Earths, 2017,35(8):791-799. doi: 10.1016/S1002-0721(17)60978-5
YU Shan-qing, TIAN Hui-ping, ZHU Yu-xia, DAI Zhen-yu, LONG Jun. Mechanism of rare earth cations on the stability and acidity of Y zeolites[J]. Acta Phys-Chim Sin, 2011,27(11):2528-2534. doi: 10.3866/PKU.WHXB20111101
LI J, ZENG P, ZHAO L, REN S, GUO Q, ZHAO H, WANG B, LIU H, PANG X, GAO X, SHEN B. Tuning of acidity in CeY catalytic cracking catalysts by controlling the migration of Ce in the ion exchange step through valence changes[J]. J Catal, 2015,329:441-448. doi: 10.1016/j.jcat.2015.06.012
DU X, ZHANG H, LI X, TAN Z, LIU H, GAO X. Cation location and migration in lanthanum-exchanged NaY zeolite[J]. Chin J Catal, 2013,34(8):1599-1607. doi: 10.1016/S1872-2067(11)60622-6
DU X, GAO X, ZHANG H, LI X, LIU P. Effect of cation location on the hydrothermal stability of rare earth-exchanged Y zeolites[J]. Catal Commun, 2013,35:17-22. doi: 10.1016/j.catcom.2013.02.010
DENG C, ZHANG J, DONG L, HUANG M, LI B, JIN G, GAO J, ZHANG F, FAN M, ZHANG L, GONG Y. The effect of positioning cations on acidity and stability of the framework structure of Y zeolite[J]. Sci Rep-UK, 2016,623382. doi: 10.1038/srep23382
SCHUÜ
MITCHELL B R. Metal contamination of cracking catalysts. 1. Synthetic metals deposition on Fresh catalysts[J]. Ind Eng Chem Prod Res Dev, 1980,19:209-213. doi: 10.1021/i360074a015
WANG Lin, SUN Xue-qin, CHEN Shu-kun, CAO Geng-zhen, QU Zhao-xia, YANG Yi-qing, WANG Bao-jie. Influence of nickel depositon on catalytic cracking activity and gasoline properties[J]. Appl Chem Ind, 2012,41(11):1960-1962.
ZHENG X, WU S, WANG S, WANG S. The preparation and catalytic behavior of copper-cerium oxide catalysts for low-temperature carbon monoxide oxidation[J]. Appl Catal A:Gen, 2005,283(1):217-223.
LIU Hui-Min, LI Yu-ming, WU Hao, YANG Wei-wei, HE De-hua. Effects of Nd, Ce, and La modification on catalytic performance of Ni/SBA-15 catalyst in CO2 reforming of CH4[J]. Chin J Catal, 2014,35(9):1520-1528.
SONG H, WAN X, DAI M, ZHANG J, LI F, SONG H. Deep desulfurization of model gasoline by selective adsorption over Cu-Ce bimetal ion-exchanged Y zeolite[J]. Fuel Process Technol, 2013,116:52-62. doi: 10.1016/j.fuproc.2013.04.017
GRACA I, GONZÁLEZ L V, BACARIZA M C, FERNANDES A, HENRIQUES C, LOPES J M, RIBEIRO M F. CO2 hydrogenation into CH4 on NiHNaUSY zeolites[J]. Appl Catal B:Environ, 2014,147:101-110. doi: 10.1016/j.apcatb.2013.08.010
ZHANG S H, MURATSUGU S, ISHIGURO N, TADA M. Ceria-doped Ni/SBA-16 catalysts for dry reforming of methane[J]. ACS Catal, 2013,3(8):1855-1864. doi: 10.1021/cs400159w
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
Yongming Zhu , Huili Hu , Yuanchun Yu , Xudong Li , Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086
Liang TANG , Jingfei NI , Kang XIAO , Xiangmei LIU . Synthesis and X-ray imaging application of lanthanide-organic complex-based scintillators. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1892-1902. doi: 10.11862/CJIC.20240139
Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192
Pingping Zhu , Yongjun Xie , Yuanping Yi , Yu Huang , Qiang Zhou , Shiyan Xiao , Haiyang Yang , Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063
Keweiyang Zhang , Zihan Fan , Liyuan Xiao , Haitao Long , Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084
Xinyu Yin , Haiyang Shi , Yu Wang , Xuefei Wang , Ping Wang , Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007
Jiahong ZHENG , Jiajun SHEN , Xin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253
Wen YANG , Didi WANG , Ziyi HUANG , Yaping ZHOU , Yanyan FENG . La promoted hydrotalcite derived Ni-based catalysts: In situ preparation and CO2 methanation performance. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 561-570. doi: 10.11862/CJIC.20230276
Shiyi WANG , Chaolong CHEN , Xiangjian KONG , Lansun ZHENG , Lasheng LONG . Polynuclear lanthanide compound [Ce4ⅢCe6Ⅳ(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342
Yuting ZHANG , Zunyi LIU , Ning LI , Dongqiang ZHANG , Shiling ZHAO , Yu ZHAO . Nickel vanadate anode material with high specific surface area through improved co-precipitation method: Preparation and electrochemical properties. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2163-2174. doi: 10.11862/CJIC.20240204
Zhicheng JU , Wenxuan FU , Baoyan WANG , Ao LUO , Jiangmin JIANG , Yueli SHI , Yongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Ming Li , Zhaoyin Li , Mengzhu Liu , Shaoxiang Luo . Unveiling the Artistry of Mordant Dyeing: The Coordination Chemistry Beneath. University Chemistry, 2024, 39(5): 258-265. doi: 10.3866/PKU.DXHX202311085
Gonglan Ye , Xia Yin , Feng Xu , Peng Yang , Yingpeng Wu , Huilong Fei . Innovations in “Four-in-One” Inorganic Chemistry Education. University Chemistry, 2024, 39(8): 136-141. doi: 10.3866/PKU.DXHX202401071
Quanguo Zhai , Peng Zhang , Wenyu Yuan , Ying Wang , Shu'ni Li , Mancheng Hu , Shengli Gao . Reconstructing the “Fundamentals of Coordination Chemistry” in Inorganic Chemistry Course. University Chemistry, 2024, 39(11): 117-130. doi: 10.12461/PKU.DXHX202403065
Li Zhou , Dongyan Tang , Yunchen Du . Focusing on the Cultivation of Outstanding Talents: A “Five in One” Approach to Promoting the Construction of Chemical Experimental and Practical Teaching System. University Chemistry, 2024, 39(7): 121-128. doi: 10.12461/PKU.DXHX202405037
Guang Huang , Lei Li , Dingyi Zhang , Xingze Wang , Yugai Huang , Wenhui Liang , Zhifen Guo , Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051
.
a: USY; b: CeUSY-1; c: CeUSY-2; d: CeUSY-3
(a): Ni/USY; (b): Ni/CeUSY-1; (c): Ni/CeUSY-2; (d): Ni/CeUSY-3 red and blue points denote the Ni and Ce element in EDS maps, respectively
a: USY; b: CeUSY-1; c: CeUSY-2; d: CeUSY-3