Citation: Li Peiwen, Gao Juanjuan, Zhang Xumei, Zhang Shupeng. Rational Design of Core-Shell Electrode Materials for Oxygen Reduction Reaction in Fuel Cell[J]. Chemistry, ;2018, 81(11): 963-971. shu

Rational Design of Core-Shell Electrode Materials for Oxygen Reduction Reaction in Fuel Cell

  • Corresponding author: Zhang Shupeng, shupeng_2006@126.com
  • Received Date: 17 June 2018
    Accepted Date: 18 August 2018

Figures(4)

  • The rapid development of nanotechnology has promoted the production of core-shell nanoparticles as a new type of functional material. By rationally designing the core and shell composition, a series of core-shell nanomaterials with functional tunability can be constructed. The material can be used as a cathode electrode for oxygen reduction reaction (ORR) in fuel cells and exhibits excellent electrocatalytic performance. Based on the classification of different chemical properties of core and shell, this article reviews the application of core-shell electrode materials in ORR in recent years and proposes some existing challenges in order to provide ideas for current solutions to energy conversion and storage problems.
  • 加载中
    1. [1]

      J Cherusseri, K K Kar. J. Mater. Chem. A, 2015, 3:21586~21598. 

    2. [2]

      F Bonaccorso, L G Colobmo, G H Yu et al. Science, 2015, 347(6217):1246501~1246509. 

    3. [3]

       

    4. [4]

      M Borghei, J Lehtonen, L Liu et al. Adv. Mater., 2017, 30:1703691~1703717.

    5. [5]

      L Gan, C H Cui, S Rudi et al. Top. Catal., 2014, 57(1/4):236~244.

    6. [6]

      J Greeley, I E L Stephens, A S Bondarenko et al. Nat. Chem., 2009, 1(7):552~556. 

    7. [7]

      J P Lai, S J Guo. Small, 2017, 13(48):1702156~1702170. 

    8. [8]

       

    9. [9]

       

    10. [10]

       

    11. [11]

      M Mukherjee, M Samanta, U K Ghorai et al. Appl. Surf. Sci., 2018, 449:144~151. 

    12. [12]

      D Guo, H Wei, X Chen et al. J. Mater. Chem. A, 2017, 5(34):18193~18206. 

    13. [13]

      L Gan, S Rudi, C H Cui et al. Small, 2016, 12(23):3189~3196. 

    14. [14]

      Y C Fan, S Ida, A Staykov et al. Small, 2017, 13(25):1700099~1700106. 

    15. [15]

      L Z Bu, J B Ding, S J Guo et al. Adv. Mater., 2015, 27(44):7204~7212. 

    16. [16]

      I S Amiinu, X B Liu, Z H Pu et al. Adv. Funct. Mater., 2018, 28(5):1704638~1704646. 

    17. [17]

      Z J Wang, B Li, X M Ge et al. Small, 2016, 12(19):2580~2587. 

    18. [18]

      J F Li, Y J Zhang, S Y Ding et al. Chem. Rev., 2017, 117(7):5002~5069. 

    19. [19]

      R G Chaudhur, S Paria. Chem. Rev., 2012, 112(4):2373~2433. 

    20. [20]

      L B Jiang, X Z Yuan, J Liang et al. J. Power Sources, 2016, 331:408~425. 

    21. [21]

       

    22. [22]

      L Adijanto, D A Bennett, C Chen et al. Nano Lett., 2013, 13(5):2252~2257. 

    23. [23]

      M B Gawande, A Goswami, T Asefa et al. Chem. Soc. Rev., 2015, 44(21):7540~7590. 

    24. [24]

      P Strasser, S Kühl. Nano Energy, 2016, 29:166~177. 

    25. [25]

      P Raghavendra, G V Reddy, R Sivasubramanian et al. Int. J. Hydrogen Energy, 2017, 43(8):4125~4135. 

    26. [26]

      R Liu, R D Priestley. J. Mater. Chem. A, 2016, 4(18), 6680~6692.

    27. [27]

      A M El-Toni, M A Habila, J P Labis et al. Nanoscale, 2016, 8(5):2510~2531. 

    28. [28]

      S F Fu, C Z Zhu, J H Song et al. J. Mater. Chem. A, 2017, 7(19):1700363~1700381.

    29. [29]

      J B Wu, H Yang. Acc. Chem. Res., 2013, 46(8):1848~1857. 

    30. [30]

      M Borghei, N Laocharoen, E Kibena-Põldsepp et al. Appl. Catal. B., 2017, 204:394~402. 

    31. [31]

      Y J Wang, W Y Long, L L Wang et al. Energy Environ. Sci., 2018, 11:258~275. 

    32. [32]

      J T Zhang, L M Dai. ACS Catal., 2015, 5(12):21~28. 

    33. [33]

      V Goellner, V Armel, A Zitolo et al. J. Electrochem. Soc., 2015, 162(6):403~414. 

    34. [34]

      S Sui, X Y Wang, X T Zhou et al. J. Mater. Chem. A, 2016, 5(5):1808~1825. 

    35. [35]

      R M Félix-Navarro, M Beltrán-Gastélum, E A Reynoso-Soto et al. Renew. Energy, 2016, 87:31~41. 

    36. [36]

      A A Gewirth, J A Varnell, A M Diascro. Chem. Rev., 2018, 118(5):2313~2339. 

    37. [37]

      M Markiewicz, C Zalitis, A Kucernak. Electrochim. Acta, 2015, 179:126~136. 

    38. [38]

      H Osgood, S V Devaguptapu, H Xu et al. Nano Today, 2016, 11(5):601~625. 

    39. [39]

      J Stacy, Y N Regmi, B Leonard et al. Renew. Sustain. Energy Rev., 2017, 69:401~414. 

    40. [40]

      C Z Zhu, H Li, S F Fu et al. Chem. Soc. Rev., 2016, 47(13):517~531.

    41. [41]

      R G Chaudhuri, S Paria. Chem. Rev., 2012, 112(4):2373~2433. 

    42. [42]

       

    43. [43]

      K Qi, W T Zheng, X Q Cui. Nanoscale, 2015, 8(3):1698~1703.

    44. [44]

      J Y Cao, M W Guo, J Y Wu et al. J. Power Sources, 2015, 277:155~160. 

    45. [45]

      Y Q Guo, K Xu, C Z Wu et al. Chem. Soc. Rev., 2015, 44(3):637~646. 

    46. [46]

      D Takimoto, T Ohnishi, J Nutariya et al. J. Catal., 2017, 345:207~215. 

    47. [47]

       

    48. [48]

      S Liu, Z Yang, M Li et al. Electrochim. Acta, 2018, 265:221~231. 

    49. [49]

      A Sarapuu, E Kibenapõldsepp, M Borghei et al. J. Mater. Chem. A, 2018, 6:776~804. 

    50. [50]

      Y Z Chen, Q Xu, S H Yu et al. Small, 2015, 11(1):71~76. 

    51. [51]

      S Q Ci, S Mao, Y Hou et al. J. Mater. Chem. A, 2015, 3(15):7986~7993. 

    52. [52]

      W Xia, R Q Zou, L An et al. Energy Environ. Sci., 2015, 8(2):568~576. 

    53. [53]

      J Jiang, H Gao, S Lu et al. J. Mater. Chem. A, 2017, 5(19):9233~9240. 

    54. [54]

      L K Wang, Z H Tang, W Yan et al. J. Power Sources, 2017, 343:458~466. 

    55. [55]

      H C Tsai, Y C Hsieh, T H Yu et al. ACS Catal., 2015, 5(3):1568~1580. 

    56. [56]

      S Diodati, E Negro, K Vezzù et al. Electrochim. Acta, 2016, 215:398~409. 

    57. [57]

      C H Si, Z Jie, W Ying et al. ACS Appl. Mater. Interf., 2017, 9(3):2485~2494. 

    58. [58]

      A Aijaz, J Masa, C Rösler et al. Angew. Chem. Int. Ed., 2016, 55(12):4087~4091. 

    59. [59]

      D Y Xu, C P Mu, B C Wang et al. Sci. China Mater., 2017, 60(10) 1~8.

    60. [60]

      S S Sun, Y J Xue, Q Wang et al. Chem. Commun., 2017, 53(56):7921~7924. 

    61. [61]

      S Ghosh, K Biswas, C N R Rao. J. Mater. Chem., 2007, 17(23):2412~2417. 

    62. [62]

      Y Cheng, S Dou, M Saunders et al. J. Mater. Chem. A, 2016, 4(36):13881~13889. 

    63. [63]

      Y Cheng, S Dou, J P Veder et al. ACS Appl. Mater. Interf., 2017, 9(9):8121~8133. 

    64. [64]

      Y X Ye, L Kuai, B Y Geng. J. Mater. Chem., 2012, 22(2):19132~19138. 

    65. [65]

      R Gao, Z Z Yang, L R Zheng et al. ACS Catal., 2018, 8(3):1955~1963. 

    66. [66]

      G J Liu, B Wang, L Wang et al. RSC Adv., 2016, 6(59) 54076~54086.

    67. [67]

      J Du, T Zhang, J L Xing et al. J. Mater. Chem. A, 2017, 5(19):9210~9216. 

    68. [68]

      Y B Yan, K X Li, X P Chen et al. Small, 2017, 13(47):1701724~1701731. 

    69. [69]

       

    70. [70]

      Y X Zeng, Y Han, Y T Zhao et al. Adv. Energy Mater., 2015, 5(12):1402176~1402182. 

    71. [71]

      J K He, M C Wang, W B Wang et al. ACS Appl. Mater. Interf., 2017, 9(49):42676~42687. 

    72. [72]

      Q J Niu, J X Guo, B L Chen et al. Carbon, 2017, 114:250~260. 

    73. [73]

      F M Wang, X Y Zhan, Z Z Cheng et al. Small, 2015, 11(6):749~755. 

    74. [74]

      X F Lu, X Y Chen, Z Wen et al. ACS Appl. Mater. Interf., 2015, 7(27):14843~14850. 

    75. [75]

      H H Zhou, G Y Han, D Y Fu et al. J. Power Sources, 2014, 272:203~210. 

    76. [76]

      C Q Dai, Y Yang, Z Zhao et al. Nanoscale, 2017, 9(26):8945~8951. 

    77. [77]

      L Z Bu, Q Shao, B E et al. J. Am. Chem. Soc., 2017, 139(28):9576~9582. 

    78. [78]

      A P Periasamy, R Ravindranath, P Roy et al. J. Mater. Chem. A, 2016, 4(33):12987~12994. 

  • 加载中
    1. [1]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    2. [2]

      Jinyi Sun Lin Ma Yanjie Xi Jing Wang . Preparation and Electrocatalytic Nitrogen Reduction Performance Study of Vanadium Nitride@Nitrogen-Doped Carbon Composite Nanomaterials: A Recommended Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(4): 184-191. doi: 10.3866/PKU.DXHX202310094

    3. [3]

      Xiting Zhou Zhipeng Han Xinlei Zhang Shixuan Zhu Cheng Che Liang Xu Zhenyu Sun Leiduan Hao Zhiyu Yang . Dual Modulation via Ag-Doped CuO Catalyst and Iodide-Containing Electrolyte for Enhanced Electrocatalytic CO2 Reduction to Multi-Carbon Products: A Comprehensive Chemistry Experiment. University Chemistry, 2025, 40(7): 336-344. doi: 10.12461/PKU.DXHX202412070

    4. [4]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    5. [5]

      Chen PuDaijie DengHenan LiLi Xu . Fe0.64Ni0.36@Fe3NiN Core-Shell Nanostructure Encapsulated in N-Doped Carbon Nanotubes for Rechargeable Zinc-Air Batteries with Ultralong Cycle Stability. Acta Physico-Chimica Sinica, 2024, 40(2): 2304021-0. doi: 10.3866/PKU.WHXB202304021

    6. [6]

      Xue DongXiaofu SunShuaiqiang JiaShitao HanDawei ZhouTing YaoMin WangMinghui FangHaihong WuBuxing Han . Electrochemical CO2 Reduction to C2+ Products with Ampere-Level Current on Carbon-Modified Copper Catalysts. Acta Physico-Chimica Sinica, 2025, 41(3): 2404012-0. doi: 10.3866/PKU.WHXB202404012

    7. [7]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    8. [8]

      Endong YANGHaoze TIANKe ZHANGYongbing LOU . Efficient oxygen evolution reaction of CuCo2O4/NiFe-layered bimetallic hydroxide core-shell nanoflower sphere arrays. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 930-940. doi: 10.11862/CJIC.20230369

    9. [9]

      Tao WangQin DongCunpu LiZidong Wei . Sulfur Cathode Electrocatalysis in Lithium-Sulfur Batteries: A Comprehensive Understanding. Acta Physico-Chimica Sinica, 2024, 40(2): 2303061-0. doi: 10.3866/PKU.WHXB202303061

    10. [10]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    11. [11]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    12. [12]

      Jianchun Wang Ruyu Xie . The Fantastical Dance of Miss Electron: Contra-Thermodynamic Electrocatalytic Reactions. University Chemistry, 2025, 40(4): 331-339. doi: 10.12461/PKU.DXHX202406082

    13. [13]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    14. [14]

      Xinyi ZhangKai RenYanning LiuZhenyi GuZhixiong HuangShuohang ZhengXiaotong WangJinzhi GuoIgor V. ZatovskyJunming CaoXinglong Wu . Progress on Entropy Production Engineering for Electrochemical Catalysis. Acta Physico-Chimica Sinica, 2024, 40(7): 2307057-0. doi: 10.3866/PKU.WHXB202307057

    15. [15]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    16. [16]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    17. [17]

      Xiangyu CAOJiaying ZHANGYun FENGLinkun SHENXiuling ZHANGJuanzhi YAN . Synthesis and electrochemical properties of bimetallic-doped porous carbon cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 509-520. doi: 10.11862/CJIC.20240270

    18. [18]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    19. [19]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    20. [20]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

Metrics
  • PDF Downloads(3)
  • Abstract views(371)
  • HTML views(54)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return