Citation: Jin Dongliang, Li Zhaozhou, Gu Shaobin, Shang Huijie. Preparation and Application of Enzyme-Mimics Based on Molecular Imprinting[J]. Chemistry, ;2019, 82(7): 579-584. shu

Preparation and Application of Enzyme-Mimics Based on Molecular Imprinting

Figures(4)

  • Molecular imprinting mimic enzyme is a man-made polymer which has the specific catalytic activity for the target molecule by using molecular imprinting technology. It also shows good chemical and physical stability, structural predetermination and practicality. This paper mainly presents the construction strategy of the molecular imprinting mimic enzyme:transition state analogs imprinting, substrate or structural analogs imprinting and other construction approaches. The recent research progress in the preparation method was reviewed in this paper. The catalytic reactions with the enzyme mimics which relate to the catalysis for organic synthesis, decomposition of hazardous substances for food safety, degradation of environmental pollutants and examination in clinical medicine etc were summarized.
  • 加载中
    1. [1]

       

    2. [2]

    3. [3]

      G Wulff. Microchim. Acta, 2013, 180(15-16): 1359-1370. 

    4. [4]

       

    5. [5]

      D Mathew, B Thomas, K S Devaky. J. Mol. Catal. A, 2016, 415: 65-73. 

    6. [6]

      D Mathew, B Thomas, K S Devaky. Polymer, 2017, 111: 285-296. 

    7. [7]

      D Mathew, B Thomas, K S Devaky. Appl. Catal. A, 2016, 528: 93-103. 

    8. [8]

      D Mathew, B Thomas, K S Devaky. Artif. Cell Blood Sub., 2017: 1-8. 

    9. [9]

      D Mathew, B Thomas, K S Devaky. Bioorg. Chem., 2017, 74: 91-103. 

    10. [10]

      Z Cheng, L Zhang, Y Li. Chem. Eur. J., 2010, 10(14): 3555-3561. 

    11. [11]

      S Muratsugu, N Maity, H Baba et al. Dalton Transac., 2017, 46(10): 3125-3134. 

    12. [12]

       

    13. [13]

      A Jorge, M Chernobryva, S Rigby et al. Chem. Eur. J., 2016, 22(11): 3764-3774. 

    14. [14]

      Y Yang, Z Weng, S Muratsugu et al. Chem. Eur. J., 2012, 18(4): 1142-1153. 

    15. [15]

      W Sun, R Tan, We Zheng et al. Chin. J. Catal., 2013, 34(8): 1589-1598. 

    16. [16]

      D K Robinson, K Mosbach. J. Chem. Soc., 1989, (14): 969-970.

    17. [17]

      Y Gu, P Xue. J. Chin. Chem. Soc-TAIP, 2018, 65(6): 696-705. 

    18. [18]

      M Shahid, Z H Farooqi, R Begum et al. Korean J. Chem. Eng., 2018, 35(5): 1099-1107. 

    19. [19]

      X Liu, P Lv, G Yao et al. Colloid Surf. A, 2014, 441: 420-426. 

    20. [20]

      C Lai, M Wang, G Zeng et al. Appl. Surf. Sci., 2016, 390: 368-376. 

    21. [21]

      M Meng, L Bao, M He et al. J. Appl. Polym. Sci., 2014, 131(8): 631-644. 

    22. [22]

      D Carboni, B Lasio, L Malfatti et al. J. Sol-Gel Sci. Tech., 2016, 79(2): 395-404. 

    23. [23]

      Y Liu, R Liu, C Liu et al. J. Hazard. Mater., 2010, 182(1): 912-918. 

    24. [24]

       

    25. [25]

      L Zhang, Y Guo, W Chi et al. Chin. J. Polym. Sci., 2014, 32(11): 1469-1478. 

    26. [26]

      K Ohkubo, Y Urata, S Hirota et al. J. Mol. Catal. B, 1994, 93(2): 189-193. 

    27. [27]

      A Leonhardt, K Mosbach. React. Polym., 1987, 6(2): 285-290. 

    28. [28]

      L Hu, Y Zhao. Helv. Chim. Acta, 2017, 100: 1-8.

    29. [29]

      L Hu, Y Zhao. Org. Biomol. Chem., 2018, 18(31): 5580-5584.

    30. [30]

      C Philip, K S Devaky. Mol. Catal., 2017, 436: 276-284. 

    31. [31]

      B Tomasz, J Andres, J C Smith et al. J. Comput. Chem., 2012, 33(19): 1603-1614. 

    32. [32]

      A Visnjevski, E Yilmaz, O Brüggemann. Appl. Catal. A, 2004, 260(2): 169-174. 

    33. [33]

      Z Xu, J Yu, J Li. Chem. J. Chin. U., 2011, 32(5): 1157-1162.

    34. [34]

      R Luo, M Zhu, X Shen et al. J. Catal., 2015, 331: 49-56. 

    35. [35]

      Q Li, M Zhu, X Shen et al. RSC Adv., 2015, 5(44): 34985-34991. 

    36. [36]

      F Locatelli, P Gamez, M Lemaire. J. Mol. Catal. A, 1998, 135(1): 89-98. 

    37. [37]

      B Sellergren, R N Karmalkar, K J Shea. Tetrahedron-Asym., 2000, 65(13): 4009-4027. 

    38. [38]

      J Matsui, I A Nicholls, I Karube et al. J. Org. Chem., 1996, 61(16): 5414-5417. 

    39. [39]

      O Brüggemann. Adv. Biochem. Eng. Biot., 2002, 76: 127-163.

    40. [40]

      J V Beach, K J Shea. J. Am. Chem. Soc., 1994, 116(1): 379-380. 

    41. [41]

      Y Ohya, J Miyaoka, T Ouchi. Macromol. Rapid Commun., 2010, 17(12): 871-874. 

    42. [42]

      W B Motherwell, M J Bingham, J Pothier. Tetrahedron, 2004, 60(14): 3231-3241. 

    43. [43]

      H Shi, R Wang, J Yang et al. Eur. Polym. J., 2015, 72: 190-201. 

    44. [44]

      R Wang, J Pan, M Qin et al. Eur. Polym. J., 2019, 110: 1-8. 

    45. [45]

      C C de Escobar, Y P M Ruiz, J H Z dos Santos et al. Colloid Surf. A, 2018, 538: 729-738. 

    46. [46]

      C Zhang, H Chen, M Ma et al. J. Mol. Catal. A, 2015, 402: 10-16. 

    47. [47]

      R Shutov, A Guerreiro, E Moczko et al. Small, 2014, 10(6): 1086-1089. 

    48. [48]

      J Czulak, A Guerreir, K Metran et al. Nanoscale, 2016, 8(21): 11060-11066. 

    49. [49]

      L Fan, H Wu, D Lou et al. Adv. Mater. Interf., 2018, 5: 1071-1079.

  • 加载中
    1. [1]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    2. [2]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    3. [3]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    4. [4]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    5. [5]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    6. [6]

      Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047

    7. [7]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    8. [8]

      Jiarong Feng Yejie Duan Chu Chu Dezhen Xie Qiu'e Cao Peng Liu . Preparation and Application of a Streptomycin Molecularly Imprinted Electrochemical Sensor: A Suggested Comprehensive Analytical Chemical Experiment. University Chemistry, 2024, 39(8): 295-305. doi: 10.3866/PKU.DXHX202401016

    9. [9]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

    10. [10]

      Zhuoya WANGLe HEZhiquan LINYingxi WANGLing LI . Multifunctional nanozyme Prussian blue modified copper peroxide: Synthesis and photothermal enhanced catalytic therapy of self-provided hydrogen peroxide. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2445-2454. doi: 10.11862/CJIC.20240194

    11. [11]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    12. [12]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    13. [13]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    14. [14]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    15. [15]

      Dan Liu . 可见光-有机小分子协同催化的不对称自由基反应研究进展. University Chemistry, 2025, 40(6): 118-128. doi: 10.12461/PKU.DXHX202408101

    16. [16]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    17. [17]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    18. [18]

      Xiaochen ZhangFei YuJie Ma . Cutting-Edge Applications of Multi-Angle Numerical Simulations for Capacitive Deionization. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-0. doi: 10.3866/PKU.WHXB202311026

    19. [19]

      Chunmei GUOWeihan YINJingyi SHIJianhang ZHAOYing CHENQuli FAN . Facile construction and peroxidase-like activity of single-atom platinum nanozyme. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1633-1639. doi: 10.11862/CJIC.20240162

    20. [20]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

Metrics
  • PDF Downloads(8)
  • Abstract views(504)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return