Citation: ZHANG Xiao-qi, SHEN Bo-xiong, ZHANG Xiao, CHEN Ding-ding. Study on the mercury removal using Mn loaded Fe-based MOFs[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(1): 113-120. shu

Study on the mercury removal using Mn loaded Fe-based MOFs

  • Corresponding author: SHEN Bo-xiong, shenboxiong0722@sina.com
  • Received Date: 26 July 2018
    Revised Date: 30 October 2018

    Fund Project: Tianjin Science Popularization Project 18KPXMSF00080Fund of Hebei Province E2018202180the Project of Science and Technology of Tianjin 18ZXSZSF00040Key Fund of Tianjin 18JCZDJC39800the National Important Research and Development Plan 2018YFB0605101the Project of Science and Technology of Tangshan 18130211AThe project was supported by the National Important Research and Development Plan (2018YFB0605101), Key Fund of Tianjin(18JCZDJC39800), the Project of Science and Technology of Tianjin (18ZXSZSF00040), Tianjin Science Popularization Project (18KPXMSF00080), the Project of Science and Technology of Tangshan (18130211A) and Fund of Hebei Province(E2018202180)

Figures(11)

  • The Mn/MIL-100 (Fe) mercury removal agent loaded with 6% Mn was prepared by impregnation method using Fe-based metal organic framework (MOFs) as the support. A set of fixed bed reactor apparatus was installed and used to study the performance of Mn/MIF-100(Fe) to remove elemental mercury (Hg0) in the simulated flue gas. The materials were characterized by XRD, XPS, BET and TGA. The results showed that Mn/MIF-100 (Fe) had high efficiency in removing elemental mercury (Hg0). When the GHSV was 180000 h-1 at 250℃, the mercury removal (Hg0) efficiency was above 82%. The main mercury removal mechanism of Mn/MIF-100 (Fe) was oxidation, and the loading of Mn promoted the adsorption of mercury. With the increase of flue gas temperature, the oxidation efficiency of elemental mercury was gradually increased. O2 and NO promoted the removal of mercury while SO2 and NH3 inhibited the removal of mercury. Mn/MIL-100(Fe) had a strong adaptability to the complex flue gas as a whole.
  • 加载中
    1. [1]

      DAHLAN I, KEATTEONG L, KAMARUDDIN A H, MOHAMED A R. Selection of metal oxides in the preparation of rice husk ash (RHA)/CaO sorbent for simultaneous SO2 and NO removal[J]. J Hazard Mater, 2009,166(2):1556-1559.  

    2. [2]

      LI H L, WU C Y, LI Y, ZHANG J Y. CeO2-TiO2 catalysts for catalytic oxidation of elemental mercury in low-rank coal combustion flue gas[J]. Environ Sci Technol, 2011,45(17):7394-7400. doi: 10.1021/es2007808

    3. [3]

      YUAN Y, ZHANG J Y, LI H L, LI Y, ZHAO Y C, ZHENG C G. Simultaneous removal of SO2, NO and mercury using TiO2-aluminum silicate fiber by photocatalysis[J]. Chem Eng J, 2012,192(2):21-28.  

    4. [4]

      LI Y, MURPHY P D, WU C Y, POWERS K W, BONZONGO J-C J. Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas[J]. Environ Sci Technol, 2008,42(14):5304-5309. doi: 10.1021/es8000272

    5. [5]

      LI B, WANG H L, XU Y Y, XUE J M. Study on mercury oxidation by SCR catalyst in coal-fired power plant[J]. Chem Eng J, 2017,141(3):339-344.  

    6. [6]

      ESWARAN S, STENGER H G. Understanding mercury conversion in selective catalytic reduction (SCR) catalysts[J]. Energy Fuels, 2005,19(6):2328-2334. doi: 10.1021/ef050087f

    7. [7]

      LI H L, WU C Y, LI Y, ZHANG J Y. Superior activity of MnOx-CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures[J]. Appl Catal B:Environ, 2012,111-112(3):381-388.  

    8. [8]

      LIU Y, WANG Y J, WANG H Q, WU Z B. Catalytic oxidation of gas-phase mercury over Co/TiO2 catalysts prepared by sol-gel method[J]. Catal Commun, 2011,12(14):1291-1294. doi: 10.1016/j.catcom.2011.04.017

    9. [9]

      YAMAGUCHI A, AKIHO H, ITO S. Mercury oxidation by copper oxides in combustion flue gases[J]. Powder Technol, 2008,180(1/2):222-226.  

    10. [10]

      ZHANG F, CHEN C, XIAO W M, XU LI, ZHANG N. CuO/CeO2 catalysts with well-dispersed active sites prepared from Cu3(BTC)2 metal-organic framework precursor for preferential CO oxidation[J]. Catal Commun, 2012,26(35):25-29.  

    11. [11]

      ROSI N L, ECKERT J, EDDAOUDI M, VODAK D T, KIM J, O'KEEFFE M, YAGHI O M. Hydrogen storage in microporous metal-organic frameworks[J]. Science, 2003,300(5622):1127-1129. doi: 10.1126/science.1083440

    12. [12]

      YAN B L, ZHANG L J, TANG Z Y, AL-MAMUN M, ZHAO H J, SU X T. Palladium-decorated hierarchical titania constructed from the metal-organic frameworks NH2 -MIL-125(Ti) as a robust photocatalyst for hydrogen evolution[J]. Appl Catal B:Environ, 2017,218(5):743-750.

    13. [13]

      LU W G, WEI Z W, GU Z Y, LIU T F, PARK J, PARK J, TIAN J, ZHANG M W, ZHANG Q, THOMAS G, BOSCH M, ZHOU H. Tuning the structure and function of metal-organic frameworks via linker design[J]. Chem Soc Rev, 2014,43(16):5561-5593. doi: 10.1039/C4CS00003J

    14. [14]

      XU B, LI X J, CHEN Z M, ZHANG T, LI C C. Pd@MIL-100(Fe) composite nanoparticles as efficient catalyst for reduction of 2/3/4-nitrophenol:Synergistic effect between Pd and MIL-100(Fe)[J]. Microporous Mesoporous Mater, 2018,255(1):1-6.  

    15. [15]

      BHATTACHARJEE A, GUMMA S, PURKAIT M K. Fe3O4 promoted metal organic framework MIL-100(Fe) for the controlled release of doxorubicin hydrochloride[J]. Microporous Mesoporous Mater, 2017,259(15):203-210.

    16. [16]

      ZHANG X, SHEN B X, ZHANG X Q, WANG F M, CHI G L, SI M. A comparative study of manganese-cerium doped metal-organic frameworks prepared via impregnation and in situ methods in the selective catalytic reduction of NO[J]. RSC Adv, 2017,7(10):5928-5936. doi: 10.1039/C6RA25413F

    17. [17]

      YANG J P, ZHAO Y C, LIANG S F, ZHANG S B, MA S M, LI H L, ZHANG J Y, ZHENG C G. Magnetic iron-manganese binary oxide supported on carbon nanofiber (Fe3-x MnxO4/CNF) for efficient removal of Hg0 from coal combustion flue gas[J]. Chem Eng J, 2018,334(15):216-224.

    18. [18]

      ZHANG S B, ZHAO Y C, YANG J P, ZHANG J Y, ZHENG C G. Fe-modified MnOx/TiO2 as the SCR catalyst for simultaneous removal of NO and mercury from coal combustion flue gas[J]. Chem Eng J, 2018,348(15):618-629.

    19. [19]

      SHEN B X, WANG Y Y, WANG F M, LIU T. The effect of Ce-Zr on NH3-SCR activity over MnOx (0.6)/Ce0.5Zr0.5O2 at low temperature[J]. Chem Eng J, 2014,236(2):171-180.  

    20. [20]

      XU Y L, ZHONG Q, LIU X Y. Elemental mercury oxidation and adsorption on magnesite powder modified by Mn at low temperature[J]. J Hazard Mater, 2015,283(11):252-259.  

    21. [21]

      LEE C W, SERRE S D, ZHAO Y X, LEE S J, HASTINGS T W. Mercury oxidation promoted by a selective catalytic reduction catalyst under simulated Powder River Basin coal combustion conditions[J]. J Air Waste Manage, 2008,58(4):484-493. doi: 10.3155/1047-3289.58.4.484

    22. [22]

      LI H L, YING L, WU C Y, ZHANG J Y. Oxidation and capture of elemental mercury over SiO2-TiO2-V2O5 catalysts in simulated low-rank coal combustion flue gas[J]. Chem Eng J, 2011,169(1):186-193.  

    23. [23]

      RODRIGUEZ J A, HRBEK J. Interaction of sulfur with well-defined metal and oxide surfaces:Unraveling the mysteries behind catalyst poisoning and desulfurization[J]. Accounts Chem Res, 1999,32(9):719-728. doi: 10.1021/ar9801191

    24. [24]

      ZHANG X, SHEN B X, ZHU S W, XU H, TIAN L H. UiO-66 and its Br-modified derivates for elemental mercury removal[J]. J Hazard Mater, 2016,320(15):556-563.  

    25. [25]

      LEE J G, JOSHI B N, SAMUEL E, AN S, SWIHART M T, LEE J S, HWANG Y K, CHANG J S, YOON S S. Supersonically sprayed gas-and water-sensing MIL-100(Fe) films[J]. J Alloy Compd, 2017,722(25):996-1001.  

    26. [26]

      LI Y, MURPHY P D, WU C Y, POWERS K W, BONZONGO J C. Development of silica/vanadia/titania catalysts for removal of elemental mercury from coal-combustion flue gas[J]. Environ Sci Technol, 2008,42(14):5304-5309. doi: 10.1021/es8000272

    27. [27]

      LI H L, WU C Y, LI Y, ZHANG J Y. Superior activity of MnOx -CeO2/TiO2 catalyst for catalytic oxidation of elemental mercury at low flue gas temperatures[J]. Appl Catal B:Environ, 2012,s111-112(3):381-388.

    28. [28]

      XU H M, ZAN Q, ZONG C X, QUAN F Q, JIAN M, YAN N Q. Catalytic oxidation and adsorption of Hg0 over low-temperature NH3 -SCR LaMnO3 perovskite oxide from flue gas[J]. Appl Catal B:Environ, 2016,186(5):30-40.  

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    3. [3]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    4. [4]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    5. [5]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    6. [6]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    7. [7]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    8. [8]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    9. [9]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    10. [10]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    11. [11]

      Bin HEHao ZHANGLin XUYanghe LIUFeifan LANGJiandong PANG . Recent progress in multicomponent zirconium?based metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2041-2062. doi: 10.11862/CJIC.20240161

    12. [12]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    13. [13]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    14. [14]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    15. [15]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    16. [16]

      Jing SUBingrong LIYiyan BAIWenjuan JIHaiying YANGZhefeng Fan . Highly sensitive electrochemical dopamine sensor based on a highly stable In-based metal-organic framework with amino-enriched pores. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1337-1346. doi: 10.11862/CJIC.20230414

    17. [17]

      Shicheng Yan . Experimental Teaching Design for the Integration of Scientific Research and Teaching: A Case Study on Organic Electrooxidation. University Chemistry, 2024, 39(11): 350-358. doi: 10.12461/PKU.DXHX202408036

    18. [18]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    19. [19]

      Shuanglin TIANTinghong GAOYutao LIUQian CHENQuan XIEQingquan XIAOYongchao LIANG . First-principles study of adsorption of Cl2 and CO gas molecules by transition metal-doped g-GaN. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1189-1200. doi: 10.11862/CJIC.20230482

    20. [20]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

Metrics
  • PDF Downloads(7)
  • Abstract views(2508)
  • HTML views(262)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return