Citation: WEI Xiao-li, SUN Tian-jun, KE Quan-li, LIU Xiao-wei, WANG Shu-dong. Adsorptive separation properties of CO2/CH4/N2 on UZM-9 synthesized by seed-assisted method[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(7): 863-870. shu

Adsorptive separation properties of CO2/CH4/N2 on UZM-9 synthesized by seed-assisted method

  • Corresponding author: WANG Shu-dong, wangsd@dicp.ac.cn; suntianjun@dicp.ac.cn
  • Received Date: 30 March 2017
    Revised Date: 5 May 2017

    Fund Project: the National Natural Science Foundation of China 21476231

Figures(7)

  • The UZM-9 zeolite was synthesized in 48 h via a seed-assisted method, in which TEAOH and TMAOH were used as organic structure directing agent (OSDA) while acid-treated UZM-9 zeolites were employed as seeds. The textural properties and hydrophobicity of the as synthesized UZM-9 zeolites and their adsorption properties for CO2/CH4/N2 were characterized by XRD, physical adsorption, SEM, ICP and TG, respectively. The results show that UZM-9 zeolites can be obtained in 2 d with the Si/Al atomic ratio up to 3 and the yield up to 65%. At 298 K and 1atm, the capacity and adsorption heat of CO2 are 5 mmol/g and 34 kJ/mol, and the selectivity of CO2/CH4, CO2/N2 and CH4/N2 are 100, 240 and 2.4 respectively. These results reveal that the as synthesized UZM-9 zeolites have good performances for carbon capture and possess considerable water resistance.
  • 加载中
    1. [1]

      TAGLIABUE M, FARRUSSENG D, VALENCIA S, AGUADO S, RAVON U, RIZZO C, CORMA A, MIRODATOS C. Natural gas treating by selective adsorption:Material science and chemical engineering interplay[J]. Chem Eng J, 2009,155(3):553-566. doi: 10.1016/j.cej.2009.09.010

    2. [2]

      BAO Z B, YU L, REN Q, LU X Y, DENG S G. Adsorption of CO2 and CH4 on a magnesium-based metal organic framework[J]. J Colloid Interface Sci, 2011,353(2):549-556. doi: 10.1016/j.jcis.2010.09.065

    3. [3]

      RUFFORD T E, SMART S, WATSON G C Y, GRAHAM B F, BOXALL J, DINIZ DA COSTA J C, MAY E F. The removal of CO2 and N2 from natural gas:A review of conventional and emerging process technologies[J]. J Pet Sci Eng, 2012,94:123-154.  

    4. [4]

      CHEN Zhao-yuan, Gas Deep Cooling Method[M]. Beijing:Chemical Industry Press, 2005.

    5. [5]

      WANG Xue-song. Membrane Technology[M]. Beijng:Chemical Industry Press, 2010.

    6. [6]

      FAN Shuan-shi, CHENG Hong-yuan, CHEN Guang-jin. Separation technique based on gas hydrate formation[J]. Mod Chem Ind, 1999,19(2):11-12.  

    7. [7]

      LV Bi-hong, JIN Jia-jia, ZHANG Li, LI Wei. A systematic review of CO2 adsorption using amine[J]. Petrochem Technol, 2011,40(8):803-809.  

    8. [8]

      WANG Hong-mei, LUO Shi-zhong, WU Yong-yong, SUN Si, LI Tong. Study on modified silica gels and their adsorption properties for CO2/CH4 mixed gas separation[J]. Nat Gas Chem Ind:C1, 2012,37(5):1-5.  

    9. [9]

      ROCHA L A M, ANDREASSEN K A, GRANDE C A. Separation of CO2/CH4 using carbon molecular sieve (CMS) at low and high pressure[J]. Chem Eng Sci, 2017,164:148-157. doi: 10.1016/j.ces.2017.01.071

    10. [10]

      ZHANG Bo, GU Min, XIAN Xue-fu. Effects structure and surface property on adsorptive separation of carbon molecular sieve for CH4/N2 and CO2/N2[J]. J Funct Mater, 2012,43(20):2858-2862. doi: 10.3969/j.issn.1001-9731.2012.20.029

    11. [11]

      HIMENO S, KOMATSU T, FUJITA S. High-pressure adsorption equilibria of methane and carbon dioxide on several activated carbons[J]. J Chem Eng Data, 2005,50(2):369-376. doi: 10.1021/je049786x

    12. [12]

      PENG X, WANG W, XUE R, SHEN Z. Adsorption separation of CH4/CO2 on mesocarbon microbeads:experiment and modeling[J]. AIChE J, 2006,52(3):994-1003. doi: 10.1002/(ISSN)1547-5905

    13. [13]

      BAI B C, CHO S, YU H R, YI K B, KIM K D, LEE Y S. Effects of aminated carbon molecular sieves on breakthrough curve behavior in CO2/CH4separation[J]. J Ind Eng Chem, 2013,19(3):776-783. doi: 10.1016/j.jiec.2012.10.016

    14. [14]

      HAO S, ZHANG J, ZHONG Y, ZHU W. Selective adsorption of CO2 on amino-functionalized silica spheres with centrosymmetric radial mesopores and high amino loading[J]. Adsorpt, 2012,18(5/6):423-430.  

    15. [15]

      SONGOLZADEH M, SOLEIMANIOl M, TAKHT R M, SONGOLZADEH R. Carbon dioxide separation from flue gases:a technological review emphasizing reduction in greenhouse gas emissions[J]. Sci World J, 2014828131.  

    16. [16]

      SUN T, REN X, HU J, WANG S. Expanding pore size of Al-BDC Metal-Organic Frameworks as a way to achieve high adsorption selectivity for CO2/CH4 sseparation[J]. J Phys Chem C, 2014,118(29):15630-15639. doi: 10.1021/jp411536d

    17. [17]

      VENNA S R, CARREON M A. Highly permeable zeolite imidazolate framework-8 membranes for CO2/CH4 separation[J]. J Am Chem Soc, 2009,132(1):76-78.  

    18. [18]

      PALOMINO M, CORMA A, REY F, VALENCIA S. New insights on CO2-methane separation using LTA zeolites with different Si/Al ratios and a first comparison with MOFs[J]. Langmuir, 2009,26(3):1910-1917.  

    19. [19]

      LIU B, SMIT B. Molecular simulation studies of separation of CO2/N2, CO2/CH4, and CH4/N2 by ZIFs[J]. J Phys Chem C, 2010,114(18):8515-8522. doi: 10.1021/jp101531m

    20. [20]

      JAIME G M, GREGORY J L, JANA L G, MARK A M, LISA M R. Crystalline aluminosilicate zeolitic composition:UZM-9:US, 6713041 B1[P]. 2004-3-30.

    21. [21]

      PARK M B, LEE Y, ZHENG A, XIAO F S, NICHOLAS C P, LEWIS G J, HONG S B. Formation pathway for lta zeolite crystals synthesized via a charge density mismatch approach[J]. J Am Chem Soc, 2012,135(6):2248-2255.  

    22. [22]

      KIM S H, PARK M B, MIN H K, HONG S B. Zeolite synthesis in the tetraethylammonium-tetramethylammonium mixed-organic additive system[J]. Microporous Mesoporous Mater, 2009,123(1):160-168.  

    23. [23]

      TOTH J. Thermodynamical model and prediction of gas/solid adsorption isotherms[J]. J Colloid Interface Sci, 2004,275(1):2-8. doi: 10.1016/j.jcis.2004.02.073

    24. [24]

      PETER S A, SEBASTIAN J, JASRA R V. Adsorption of nitrogen, oxygen, and argon in mono-, di-, and trivalent cation-exchanged zeolite mordenite[J]. Ind Eng Chem Res, 2005,44(17):6856-6864. doi: 10.1021/ie050128v

    25. [25]

      PHAM T D, LIU Q, LOBO R F. Carbon dioxide and nitrogen adsorption on cation-exchanged SSZ-13 zeolites[J]. Langmuir, 2012,29(2):832-839.  

    26. [26]

      DO D D. Adsorption Analysis:Equilibria and Kinetics[M]. London:Imperial CollegePress, 1998.

    27. [27]

      International Zeolite Association, Structure Commission. http://www.iza-structure.org.

    28. [28]

      ZUKAL A, AREAN C O, DELGADO M R, NACHTIGALL P, PULIDO A, MAYEROVÁ J, Ĉejka J. Combined volumetric, infrared spectroscopic and theoretical investigation of CO2 adsorption on Na-A zeolite[J]. Microporous Mesoporous Mater, 2011,146(1):97-105.  

    29. [29]

      DUNNE J A, RAO M, SIRCAR S, GORTE R J, MYERS A L. Calorimetric heats of adsorption and adsorption isotherms. 2. O2, N2, Ar, CO2, CH4, C2H6, and SF6 on NaX, H-ZSM-5, and Na-ZSM-5 zeolites[J]. Langmuir, 1996,12(24):5896-5904. doi: 10.1021/la960496r

  • 加载中
    1. [1]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    2. [2]

      Honghong Zhang Zhen Wei Derek Hao Lin Jing Yuxi Liu Hongxing Dai Weiqin Wei Jiguang Deng . Recent advances in synergistic catalytic valorization of CO2 and hydrocarbons by heterogeneous catalysis. Acta Physico-Chimica Sinica, 2025, 41(7): 100073-. doi: 10.1016/j.actphy.2025.100073

    3. [3]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    4. [4]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    7. [7]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    8. [8]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    9. [9]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    10. [10]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    11. [11]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    12. [12]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    13. [13]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    14. [14]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    15. [15]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    16. [16]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    17. [17]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    18. [18]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    19. [19]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    20. [20]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

Metrics
  • PDF Downloads(1)
  • Abstract views(942)
  • HTML views(230)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return