Citation: ZHANG Xiao-hong, ZHAN Hao, YIN Xiu-li, WU Chuang-zhi. Release characteristic of NOx precursors during the pyrolysis of nitrogen-rich biomass[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(12): 1464-1472. shu

Release characteristic of NOx precursors during the pyrolysis of nitrogen-rich biomass

  • Corresponding author: WU Chuang-zhi, wucz@ms.giec.ac.cn
  • Received Date: 23 June 2016
    Revised Date: 15 September 2016

Figures(13)

  • The release of NOx precursors (NH3, HCN and HNCO) in the pyrolysis of two nitrogen-rich biomass materials, viz., soybean straw (SBS) and fiberboard (FB), were investigated by thermogravimetric-Fourier transform infrared spectroscopy (TG-FTIR, for slow pyrolysis) and horizontal tubular reactor-X-ray photoelectron spectroscopy (HTR-XPS, for rapid pyrolysis); the effects of final temperature, heating rate and nitrogen form in biomass on the release characteristic were considered. The results indicate that the evolution pathway is related to the form of nitrogen in biomass; nitrogen in SBS (SBS-N) is mainly converted to NH3 during the secondary cracking reaction, whereas nitrogen in FB (FB-N) is transformed to NH3, HCN (rapid) and HNCO (slow) during the primary pyrolysis reaction. Nitrogen in biomass (fuel-N) is inclined to convert to nitrogen in char (char-N) at low temperature and to nitrogen in tar (tar-N) or NOx precursors at high temperature (>600℃), which suggests that a pyrolysis temperature below 600℃ can suppress the release of NOx precursors. SBS-N and FB-N are characterized by protein and amide, respectively, which are partly converted to pyrrolic-N and pyridinic-N in char, forming preferably NH3 and HCN, respectively.
  • 加载中
    1. [1]

      BALAT M. Mechanisms of thermochemical biomass conversion processes.Part 1:Reactions of pyrolysis[J]. Energy Source Part A, 2008,30(7):620-635. doi: 10.1080/15567030600817258

    2. [2]

      HANSSON K M, SAMUELSSON J, TULLIN C, AMAND L E. Formation of HNCO,HCN and NH3 from the pyrolysis of bark and nitrogen-containing model compounds[J]. Combust Flame, 2004,137(3):265-277. doi: 10.1016/j.combustflame.2004.01.005

    3. [3]

      CAO J J, SHEN Z X, CHOW J C, WATSON J G, LEE S C, TIE X X, HO K F, WANG G H, HAN Y M. Winter and summer PM2.5 chemical compositions in fourteen Chinese cities[J]. J Air Waste Manage, 2012,62(10):1214-1226. doi: 10.1080/10962247.2012.701193

    4. [4]

      TIAN F J, LI B Q, CHEN Y, LI C Z. Formation of NOx precursors during the pyrolysis of coal and biomass.Part V.Pyrolysis of a sewage sludge[J]. Fuel, 2002,81(17):2203-2208. doi: 10.1016/S0016-2361(02)00139-4

    5. [5]

      BECIDAN M, SKREIBERG O, HUSTAD J E. NOx and N2O precursors (NH3 and HCN) in pyrolysis of biomass residues[J]. Energy Fuels, 2007,21(2):1173-1180. doi: 10.1021/ef060426k

    6. [6]

      YUAN S, ZHOU Z J, LI J, CHEN X L, WANG F C. HCN and NH3 released from biomass and soybean cake under rapid pyrolysis[J]. Energy Fuels, 2010,24:6166-6171. doi: 10.1021/ef100959g

    7. [7]

      REN Q Q. NOx and N2O precursors from co-pyrolysis of biomass and sludge[J]. J Therm Anal Calorim, 2013,112(2):997-1002. doi: 10.1007/s10973-012-2645-3

    8. [8]

      HANSSON K M, SAMUELSSON J, AMAND L E, TULLIN C. The temperature's influence on the selectivity between HNCO and HCN from pyrolysis of 2,5-diketopiperazine and 2-pyridone[J]. Fuel, 2003,82(18):2163-2172. doi: 10.1016/S0016-2361(03)00206-0

    9. [9]

      REN Q Q, ZHAO C S, CHEN X P, DUAN L B, LI Y J, MA C Y. NOx and N2O precursors (NH3 and HCN) from biomass pyrolysis:Co-pyrolysis of amino acids and cellulose,hemicellulose and lignin[J]. Proc Combust Inst, 2011,33:1715-1722. doi: 10.1016/j.proci.2010.06.033

    10. [10]

      REN Q Q, ZHAO C S. NOx and N2O precursors (NH3 and HCN) from biomass pyrolysis:Interaction between amino acid and mineral matter[J]. Appl Energy, 2013,112:170-174. doi: 10.1016/j.apenergy.2013.05.061

    11. [11]

      XIE Guang-hui, WANG Xiao-yu, HAN Dong-qian, XUE Shuai. Harvest index and residue factor of non-cereal crops in China[J]. J China Agric Univers, 2011(1):9-17.  

    12. [12]

      ZHANG Fa-an, ZHANG Jian-hui. Environmental protection measures to be used in MDF enterprise[J]. China Forest Products Indust, 2012(2):35-37.  

    13. [13]

      HIRATA T, KAWAMOTO S, OKURO A. Pyrolysis of melamine formaldehyde and urea formaldehyde resins[J]. J Appl Polym Sci, 1991,42(12):3147-3163. doi: 10.1002/app.1991.070421208

    14. [14]

      VALENTIM B, GUEDES A, BOAVIDA D. Nitrogen functionality in "oil window" rank range vitrinite rich coals and chars[J]. Org Geochem, 2011,42(5):502-509. doi: 10.1016/j.orggeochem.2011.03.008

    15. [15]

      WEI L H, WEN L, YANG T H, ZHANG N. Nitrogen transformation during sewage sludge pyrolysis[J]. Energy Fuels, 2015,29(8):5088-5094. doi: 10.1021/acs.energyfuels.5b00792

    16. [16]

      ZHOU H, JENSEN A D, GLARBORG P, KAVALIAUSKAS A. Formation and reduction of nitric oxide in fixed-bed combustion of straw[J]. Fuel, 2006,85(5/6):705-716.

    17. [17]

      VERMEULEN I, BLOCK C, VANDECASTEELE C. Estimation of fuel-nitrogen oxide emissions from the element composition of the solid or waste fuel[J]. Fuel, 2012,94(1):75-80.  

    18. [18]

      EIGENMANN F, MACIEJEWSKI M, BAIKER A. Quantitative calibration of spectroscopic signals in combined TG-FTIR system[J]. Thermochim Acta, 2006,440(1):81-92. doi: 10.1016/j.tca.2005.10.018

    19. [19]

      ZHU H M, JIANG X G, YAN J H, CHI Y, CEN K F. TG-FTIR analysis of PVC thermal degradation and HCl removal[J]. J Anal Appl Pyrolysis, 2008,82(1):1-9. doi: 10.1016/j.jaap.2007.11.011

    20. [20]

      YUAN Shuai, LI Jun, ZHOU Zhi-jie, WANG Fu-cheng. Mechanisms of HCN and NH3 formation during rapid pyrolysis of pyridinic nitrogen containing substances[J]. J Fuel Chem Technol, 2011,39(6):413-418.  

    21. [21]

      ZHU X D, YANG S J, WANG L, LIU Y C, QIAN F, YAO W Q, ZHANG S C, CHEN J M. Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology[J]. Environ Pollut, 2016,211:20-27. doi: 10.1016/j.envpol.2015.12.032

    22. [22]

      HANSSON K M, AMAND L E, HABERMANN A, WINTER F. Pyrolysis of poly-L-leucine under combustion-like conditions[J]. Fuel, 2003,82(6):653-660. doi: 10.1016/S0016-2361(02)00357-5

    23. [23]

      LEICHTNAM J N, SCHWARTZ D, GADIOU R.J. The behaviour of fuel-nitrogen during fast pyrolysis of polyamide at high temperature[J]. J Anal Appl Pyrolysis, 2000,55(2):255-268. doi: 10.1016/S0165-2370(00)00075-9

  • 加载中
    1. [1]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

    2. [2]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    3. [3]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    4. [4]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    5. [5]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    6. [6]

      Jun Huang Pengfei Nie Yongchao Lu Jiayang Li Yiwen Wang Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066

    7. [7]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    8. [8]

      Chi Li Jichao Wan Qiyu Long Hui Lv Ying XiongN-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016

    9. [9]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    10. [10]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    11. [11]

      Ji Qi Jianan Zhu Yanxu Zhang Jiahao Yang Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050

    12. [12]

      Tianyun Chen Ruilin Xiao Xinsheng Gu Yunyi Shao Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017

    13. [13]

      Yuxin CHENYanni LINGYuqing YAOKeyi WANGLinna LIXin ZHANGQin WANGHongdao LIWenmin WANG . Construction, structures, and interaction with DNA of two Sm4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258

    14. [14]

      Hong RAOYang HUYicong MAChunxin LÜWei ZHONGLihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275

    15. [15]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    16. [16]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    17. [17]

      Jingjing QINGFan HEZhihui LIUShuaipeng HOUYa LIUYifan JIANGMengting TANLifang HEFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003

    18. [18]

      Changqing MIAOFengjiao CHENWenyu LIShujie WEIYuqing YAOKeyi WANGNi WANGXiaoyan XINMing FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192

    19. [19]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    20. [20]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

Metrics
  • PDF Downloads(0)
  • Abstract views(807)
  • HTML views(118)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return