Release characteristic of NOx precursors during the pyrolysis of nitrogen-rich biomass
- Corresponding author: WU Chuang-zhi, wucz@ms.giec.ac.cn
Citation:
ZHANG Xiao-hong, ZHAN Hao, YIN Xiu-li, WU Chuang-zhi. Release characteristic of NOx precursors during the pyrolysis of nitrogen-rich biomass[J]. Journal of Fuel Chemistry and Technology,
;2016, 44(12): 1464-1472.
BALAT M. Mechanisms of thermochemical biomass conversion processes.Part 1:Reactions of pyrolysis[J]. Energy Source Part A, 2008,30(7):620-635. doi: 10.1080/15567030600817258
HANSSON K M, SAMUELSSON J, TULLIN C, AMAND L E. Formation of HNCO,HCN and NH3 from the pyrolysis of bark and nitrogen-containing model compounds[J]. Combust Flame, 2004,137(3):265-277. doi: 10.1016/j.combustflame.2004.01.005
CAO J J, SHEN Z X, CHOW J C, WATSON J G, LEE S C, TIE X X, HO K F, WANG G H, HAN Y M. Winter and summer PM2.5 chemical compositions in fourteen Chinese cities[J]. J Air Waste Manage, 2012,62(10):1214-1226. doi: 10.1080/10962247.2012.701193
TIAN F J, LI B Q, CHEN Y, LI C Z. Formation of NOx precursors during the pyrolysis of coal and biomass.Part V.Pyrolysis of a sewage sludge[J]. Fuel, 2002,81(17):2203-2208. doi: 10.1016/S0016-2361(02)00139-4
BECIDAN M, SKREIBERG O, HUSTAD J E. NOx and N2O precursors (NH3 and HCN) in pyrolysis of biomass residues[J]. Energy Fuels, 2007,21(2):1173-1180. doi: 10.1021/ef060426k
YUAN S, ZHOU Z J, LI J, CHEN X L, WANG F C. HCN and NH3 released from biomass and soybean cake under rapid pyrolysis[J]. Energy Fuels, 2010,24:6166-6171. doi: 10.1021/ef100959g
REN Q Q. NOx and N2O precursors from co-pyrolysis of biomass and sludge[J]. J Therm Anal Calorim, 2013,112(2):997-1002. doi: 10.1007/s10973-012-2645-3
HANSSON K M, SAMUELSSON J, AMAND L E, TULLIN C. The temperature's influence on the selectivity between HNCO and HCN from pyrolysis of 2,5-diketopiperazine and 2-pyridone[J]. Fuel, 2003,82(18):2163-2172. doi: 10.1016/S0016-2361(03)00206-0
REN Q Q, ZHAO C S, CHEN X P, DUAN L B, LI Y J, MA C Y. NOx and N2O precursors (NH3 and HCN) from biomass pyrolysis:Co-pyrolysis of amino acids and cellulose,hemicellulose and lignin[J]. Proc Combust Inst, 2011,33:1715-1722. doi: 10.1016/j.proci.2010.06.033
REN Q Q, ZHAO C S. NOx and N2O precursors (NH3 and HCN) from biomass pyrolysis:Interaction between amino acid and mineral matter[J]. Appl Energy, 2013,112:170-174. doi: 10.1016/j.apenergy.2013.05.061
XIE Guang-hui, WANG Xiao-yu, HAN Dong-qian, XUE Shuai. Harvest index and residue factor of non-cereal crops in China[J]. J China Agric Univers, 2011(1):9-17.
ZHANG Fa-an, ZHANG Jian-hui. Environmental protection measures to be used in MDF enterprise[J]. China Forest Products Indust, 2012(2):35-37.
HIRATA T, KAWAMOTO S, OKURO A. Pyrolysis of melamine formaldehyde and urea formaldehyde resins[J]. J Appl Polym Sci, 1991,42(12):3147-3163. doi: 10.1002/app.1991.070421208
VALENTIM B, GUEDES A, BOAVIDA D. Nitrogen functionality in "oil window" rank range vitrinite rich coals and chars[J]. Org Geochem, 2011,42(5):502-509. doi: 10.1016/j.orggeochem.2011.03.008
WEI L H, WEN L, YANG T H, ZHANG N. Nitrogen transformation during sewage sludge pyrolysis[J]. Energy Fuels, 2015,29(8):5088-5094. doi: 10.1021/acs.energyfuels.5b00792
ZHOU H, JENSEN A D, GLARBORG P, KAVALIAUSKAS A. Formation and reduction of nitric oxide in fixed-bed combustion of straw[J]. Fuel, 2006,85(5/6):705-716.
VERMEULEN I, BLOCK C, VANDECASTEELE C. Estimation of fuel-nitrogen oxide emissions from the element composition of the solid or waste fuel[J]. Fuel, 2012,94(1):75-80.
EIGENMANN F, MACIEJEWSKI M, BAIKER A. Quantitative calibration of spectroscopic signals in combined TG-FTIR system[J]. Thermochim Acta, 2006,440(1):81-92. doi: 10.1016/j.tca.2005.10.018
ZHU H M, JIANG X G, YAN J H, CHI Y, CEN K F. TG-FTIR analysis of PVC thermal degradation and HCl removal[J]. J Anal Appl Pyrolysis, 2008,82(1):1-9. doi: 10.1016/j.jaap.2007.11.011
YUAN Shuai, LI Jun, ZHOU Zhi-jie, WANG Fu-cheng. Mechanisms of HCN and NH3 formation during rapid pyrolysis of pyridinic nitrogen containing substances[J]. J Fuel Chem Technol, 2011,39(6):413-418.
ZHU X D, YANG S J, WANG L, LIU Y C, QIAN F, YAO W Q, ZHANG S C, CHEN J M. Tracking the conversion of nitrogen during pyrolysis of antibiotic mycelial fermentation residues using XPS and TG-FTIR-MS technology[J]. Environ Pollut, 2016,211:20-27. doi: 10.1016/j.envpol.2015.12.032
HANSSON K M, AMAND L E, HABERMANN A, WINTER F. Pyrolysis of poly-L-leucine under combustion-like conditions[J]. Fuel, 2003,82(6):653-660. doi: 10.1016/S0016-2361(02)00357-5
LEICHTNAM J N, SCHWARTZ D, GADIOU R.J. The behaviour of fuel-nitrogen during fast pyrolysis of polyamide at high temperature[J]. J Anal Appl Pyrolysis, 2000,55(2):255-268. doi: 10.1016/S0165-2370(00)00075-9
Xiao SANG , Qi LIU , Jianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
Xinting XIONG , Zhiqiang XIONG , Panlei XIAO , Xuliang NIE , Xiuying SONG , Xiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145
Yunhao Zhang , Yinuo Wang , Siran Wang , Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083
Fei Liu , Dong-Yang Zhao , Kai Sun , Ting-Ting Yu , Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047
Jun Huang , Pengfei Nie , Yongchao Lu , Jiayang Li , Yiwen Wang , Jianyun Liu . 丝光沸石负载自支撑氮掺杂多孔碳纳米纤维电容器及高效选择性去除硬度离子. Acta Physico-Chimica Sinica, 2025, 41(7): 100066-. doi: 10.1016/j.actphy.2025.100066
Yongwei ZHANG , Chuang ZHU , Wenbin WU , Yongyong MA , Heng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386
Chi Li , Jichao Wan , Qiyu Long , Hui Lv , Ying Xiong . N-Heterocyclic Carbene (NHC)-Catalyzed Amidation of Aldehydes with Nitroso Compounds. University Chemistry, 2024, 39(5): 388-395. doi: 10.3866/PKU.DXHX202312016
Linjie ZHU , Xufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
Ji Qi , Jianan Zhu , Yanxu Zhang , Jiahao Yang , Chunting Zhang . Visible Color Change of Copper (II) Complexes in Reversible SCSC Transformation: The Effect of Structure on Color. University Chemistry, 2024, 39(3): 43-57. doi: 10.3866/PKU.DXHX202307050
Tianyun Chen , Ruilin Xiao , Xinsheng Gu , Yunyi Shao , Qiujun Lu . Synthesis, Crystal Structure, and Mechanoluminescence Properties of Lanthanide-Based Organometallic Complexes. University Chemistry, 2024, 39(5): 363-370. doi: 10.3866/PKU.DXHX202312017
Yuxin CHEN , Yanni LING , Yuqing YAO , Keyi WANG , Linna LI , Xin ZHANG , Qin WANG , Hongdao LI , Wenmin WANG . Construction, structures, and interaction with DNA of two SmⅢ4 complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1141-1150. doi: 10.11862/CJIC.20240258
Hong RAO , Yang HU , Yicong MA , Chunxin LÜ , Wei ZHONG , Lihua DU . Synthesis and in vitro anticancer activity of phenanthroline-functionalized nitrogen heterocyclic carbene homo- and heterobimetallic silver/gold complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2429-2437. doi: 10.11862/CJIC.20240275
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
Jingjing QING , Fan HE , Zhihui LIU , Shuaipeng HOU , Ya LIU , Yifan JIANG , Mengting TAN , Lifang HE , Fuxing ZHANG , Xiaoming ZHU . Synthesis, structure, and anticancer activity of two complexes of dimethylglyoxime organotin. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1301-1308. doi: 10.11862/CJIC.20240003
Changqing MIAO , Fengjiao CHEN , Wenyu LI , Shujie WEI , Yuqing YAO , Keyi WANG , Ni WANG , Xiaoyan XIN , Ming FANG . Crystal structures, DNA action, and antibacterial activities of three tetranuclear lanthanide-based complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2455-2465. doi: 10.11862/CJIC.20240192
Jing WU , Puzhen HUI , Huilin ZHENG , Pingchuan YUAN , Chunfei WANG , Hui WANG , Xiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278
Qiaowen CHANG , Ke ZHANG , Guangying HUANG , Nuonan LI , Weiping LIU , Fuquan BAI , Caixian YAN , Yangyang FENG , Chuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311
(a): weight change; (b): deriv.weight change
(a): SBS-NH3; (b): FB-NH3; (c): FB-HNCO
Figure 9
(a): raw-SBS; (b): SBS-char-500; (c): SBS-char-700; (d): raw-FB; (e): FB-char-500; (f): FB-char-700