Citation: Chen Wang, Hu Daihua, Feng Zili, Lin Mingyu, Han Meng. Progress in Synthesis of α-Arylnaphthalene Lignan Lactones[J]. Chemistry, ;2018, 81(4): 303-311. shu

Progress in Synthesis of α-Arylnaphthalene Lignan Lactones

  • Corresponding author: Chen Wang, chenwang0519@126.com
  • Received Date: 27 November 2017
    Accepted Date: 22 January 2018

Figures(1)

  • Arylnaphthalene lignan lactones, widely distributed in plants, are a class of natural products containing the phenyl-naphthyl skeleton. These compounds have attracted considerable attention of many scientists for decades because of their wide biological activities. This article reviews the recent progress in chemical synthesis of α-arylnaphthalene lignan lactones since 1980, aiming to provide references for the syntheses and clinical development of α-arylnaphthalene lignan lactones.
  • 加载中
    1. [1]

      R B Teponno, S Kusari, M Spiteller. Nat. Prod. Res., 2016, 33(9):1044~1092. 

    2. [2]

      T Ukita, Y Nakamura, A Kubo et al. J. Med. Chem., 1999, 42(7):1293~1305. 

    3. [3]

      K Kawazoe, A Yutani, K Tamemoto et al. J. Nat. Prod., 2001, 64(5):588~591. 

    4. [4]

      D Janmanchi, C H Lin, J Y Hsieh et al. Bioorg. Med. Chem., 2013, 21(7):2163~2176. 

    5. [5]

      H J Zhang, E Rumschlag-Booms, Y F Guan et al. Phytochemistry, 2017, 136(Supplement C):94~100. 

    6. [6]

      (a) K Kang, S H Oh, J H Yun et al. Neoplasia, 2011, 13(11):1043~1057; (b) Y Ren, D D Lantvit, Y Deng et al. J. Nat. Prod., 2014, 77(6):1494~1504. 

    7. [7]

      J Luo, Y Hu, W Kong et al. PloS One, 2014, 9(3):e93516. 

    8. [8]

      S Hemmati, H Seradj. Molecules, 2016, 21(7):820~840. 

    9. [9]

      K S Sagar, C C Chang, W K Wang et al. Bioorg. Med. Chem., 2004, 12(15):4045~4054. 

    10. [10]

      J Y Pan, S L Chen, M H Yang et al. Nat. Prod. Res., 2009, 26(10):1251~1292. 

    11. [11]

      R Stevenson, J V Weber. J. Nat. Prod., 1989, 52(2):367~375. 

    12. [12]

      R Stevenson, J V Weber. J. Nat. Prod., 1991, 54(1):310~314. 

    13. [13]

      P T Anastas, R Stevenson. J. Nat. Prod., 1991, 54(6):1687~1691. 

    14. [14]

       

    15. [15]

      T Kudoh, A Shishido, K Ikeda et al. Synlett, 2013, 24(12):1509~1512. 

    16. [16]

      S Mondal, M Maji, A Basak. Tetrahed. Lett., 2011, 52(11):1183~1186. 

    17. [17]

      L S Kocsis, K M Brummond. Org. Lett., 2014, 16(16):4158~4161. 

    18. [18]

      J E Park, J Lee, S Y Seo et al. Tetrahed. Lett., 2014, 55(4):818~820. 

    19. [19]

      (a) S O D Silva, C S Denis, R Rodrigo. Chem. Commun., 1980, 21(21):995~997; (b) H P Plaumann, J G Smith, R Rodrigo. Chem. Commun., 1980, 8(8):354~355.

    20. [20]

      X Lu, M G Bi, S Wu et al. J. Asian Nat. Prod. Res., 2012, 14(4):322~326. 

    21. [21]

      J Hui, Z Yu, L Zhu. Med. Chem. Res., 2012, 21(12):3994~4001. 

    22. [22]

      J Epsztajn, A Jóźwiak, A K Szcześniak. Tetrahedron, 1993, 49(4):929~938. 

    23. [23]

      (a) J E Cochran, A Padwa. J. Org. Chem., 1995, 60(13):3938~3939; (b) A Padwa, J E Cochran, C O Kappe. J. Org. Chem., 1996, 61(11):3706~3714.

    24. [24]

      A I Meyers, W B Avila. J. Org. Chem., 1981, 46(19):3881~3886. 

    25. [25]

      (a) T Hattori, H Tanaka, Y Okaishi et al. Chem. Commun., 1995, 26(3):235~241; (b) T Hattori, M Suzuki, Y Komuro et al. J. Chem. Soc., Perkin Transac., 1995, 12(12):1473~1474.

    26. [26]

      Y He, X Y Zhang, X S Fan. Chem. Commun., 2014, 50(42):5641~5643. 

    27. [27]

      F Hayat, L Kang, C Y Lee et al. Tetrahedron, 2015, 71(19):2945~2950. 

    28. [28]

      D Mal, S Jana. J. Org. Chem., 2016, 81(23):11857~11865. 

    29. [29]

       

    30. [30]

      Y Ishii, T Ikariya, M Saburi et al. Tetrahed. Lett., 1986, 27(3):365~368. 

    31. [31]

      T Kim, K H Jeong, K S Kang et al. Eur. J. Org. Chem., 2017, 2017(13):1704~1712. 

    32. [32]

      (a) T Ogiku, M Seki, M Takahashi et al. Tetrahed. Lett., 1990, 31(31):5487~5490; (b) T Ogiku, S I Yoshida, T Kuroda et al. Synlett, 1992, 1992(8):651~652.

    33. [33]

      T Ogiku, S Yoshida, H Ohmizu et al. J. Org. Chem., 1995, 60(14):4585~4590. 

    34. [34]

      E Yoshida, D Yamashita, R Sakai et al. Synlett, 2010, (15):2275~2278. 

    35. [35]

      V Gudla, R Balamurugan. J. Org. Chem., 2011, 76(24):9919~9933. 

    36. [36]

      N Eghbali, J Eddy, P T Anastas. J. Org. Chem., 2008, 73(17):6932~6935. 

    37. [37]

      P Foley, N Eghbali, P T Anastas. Green. Chem., 2010, 12(5):888~892. 

    38. [38]

      P Foley, N Eghbali, P T Anastas. J. Nat. Prod., 2010, 73(5):811~813. 

    39. [39]

      G. Naresh, R Kant, T Narender. Org. Lett., 2015, 17(14):3446~3449. 

    40. [40]

      Y Sato, T Tamura, A Kinbara et al. Adv. Synth. Catal., 2007, 349(4/5):647~661.

    41. [41]

      R M Patel, N P Argade. Org. Lett., 2013, 15(1):14~17. 

    42. [42]

      D C Harrowven, M Bradley, J L Castro et al. Tetrahed. Lett., 2001, 42(39):6973~6975. 

    43. [43]

      S R Flanagan, D C Harrowven, M Bradley. Tetrahedron, 2002, 58(30):5989~6001. 

    44. [44]

      S Takano, S Otaki, K Ogasawara. Tetrahed. Lett., 1985, 26(13):1659~1660. 

    45. [45]

      T T Kao, C C Lin, K S Shia. J. Org. Chem., 2015, 80(13):6708~6714. 

  • 加载中
    1. [1]

      Yuheng Zhou . 大学课堂的色彩——探索过渡元素的美. University Chemistry, 2025, 40(6): 303-309. doi: 10.12461/PKU.DXHX202407110

    2. [2]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    3. [3]

      Yihao Zhao Jitian Rao Jie Han . Synthesis and Photochromic Properties of 3,3-Diphenyl-3H-Naphthopyran: Design and Teaching Practice of a Comprehensive Organic Experiment. University Chemistry, 2024, 39(10): 149-155. doi: 10.3866/PKU.DXHX202402050

    4. [4]

      Qiaowen CHANGKe ZHANGGuangying HUANGNuonan LIWeiping LIUFuquan BAICaixian YANYangyang FENGChuan ZUO . Syntheses, structures, and photo-physical properties of iridium phosphorescent complexes with phenylpyridine derivatives bearing different substituting groups. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 235-244. doi: 10.11862/CJIC.20240311

    5. [5]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    6. [6]

      Renxiu Zhang Xin Zhao Yunfei Zhang . Application of Electrochemical Synthesis in the Teaching of Organic Chemistry. University Chemistry, 2025, 40(4): 174-180. doi: 10.12461/PKU.DXHX202406116

    7. [7]

      Cun WANGShaohan XUYuqian ZHANGYaoyao ZHANGTao GONGRong WENYuhang LIAOYanrong REN . Terbium complex electrochemiluminescent emitters: Synthesis and application in the detection of epinephrine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1351-1360. doi: 10.11862/CJIC.20240427

    8. [8]

      Fei Liu Dong-Yang Zhao Kai Sun Ting-Ting Yu Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047

    9. [9]

      Tingting Yu Si Chen Lianglong Sun Tongtong Shi Kai Sun Xin Wang . Comprehensive Experimental Design for the Photochemical Synthesis, Analysis, and Characterization of Difluoropyrroles. University Chemistry, 2024, 39(11): 196-203. doi: 10.3866/PKU.DXHX202401022

    10. [10]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    11. [11]

      Li Jiang Changzheng Chen Yang Su Hao Song Yanmao Dong Yan Yuan Li Li . Electrochemical Synthesis of Polyaniline and Its Anticorrosive Application: Improvement and Innovative Design of the “Chemical Synthesis of Polyaniline” Experiment. University Chemistry, 2024, 39(3): 336-344. doi: 10.3866/PKU.DXHX202309002

    12. [12]

      Qilu DULi ZHAOPeng NIEBo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006

    13. [13]

      Hexing SONGZan SUN . Synthesis, crystal structure, Hirshfeld surface analysis, and fluorescent sensing for Fe3+ of an Mn(Ⅱ) complex based on 1-naphthalic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 885-892. doi: 10.11862/CJIC.20240402

    14. [14]

      Aidang Lu Yunting Liu Yanjun Jiang . Comprehensive Organic Chemistry Experiment: Synthesis and Characterization of Triazolopyrimidine Compounds. University Chemistry, 2024, 39(8): 241-246. doi: 10.3866/PKU.DXHX202401029

    15. [15]

      Tao Cao Fang Fang Nianguang Li Yinan Zhang Qichen Zhan . Green Synthesis of p-Hydroxybenzonitrile Catalyzed by Spinach Extracts under Red-Light Irradiation: Research and Exploration of Innovative Experiments for Pharmacy Undergraduates. University Chemistry, 2024, 39(5): 63-69. doi: 10.3866/PKU.DXHX202309098

    16. [16]

      Tingyu Zhu Hui Zhang Wenwei Zhang . Exploration and Practice of Ideological and Political Education in the Course of Experiments on Chemical Functional Molecules: Synthesis and Catalytic Performance Study of Chiral Mn(III)Cl-Salen Complex. University Chemistry, 2024, 39(4): 75-80. doi: 10.3866/PKU.DXHX202311011

    17. [17]

      Cheng Zheng Shiying Zheng Yanping Zhang Shoutian Zheng Qiaohua Wei . Synthesis, Copper Content Analysis, and Luminescent Performance Study of Binuclear Copper (I) Complexes with Isomeric Luminescence Shift: A Comprehensive Chemical Experiment Recommendation. University Chemistry, 2024, 39(7): 322-329. doi: 10.3866/PKU.DXHX202310131

    18. [18]

      Qianping Li Hua Guan Changfeng Wan Yonghai Song Jianwen Jiang . 大学有机化学复习课项目式教学——以“液晶化合物4-正戊基苯甲酸-4′-正戊基苯酯的合成路线设计与产品制备”为例. University Chemistry, 2025, 40(8): 100-116. doi: 10.12461/PKU.DXHX202410070

    19. [19]

      Benhua Wang Chaoyi Yao Yiming Li Qing Liu Minhuan Lan Guipeng Yu Yiming Luo Xiangzhi Song . 一种基于香豆素氟离子荧光探针的合成、表征及性能测试——“科研反哺教学”在有机化学综合实验教学中的探索与实践. University Chemistry, 2025, 40(6): 201-209. doi: 10.12461/PKU.DXHX202408070

    20. [20]

      Hongyan Chen Yajun Hou Shui Hu Zhuoxun Wei Fang Zhu Chengyong Su . Construction of Synthetic Chemistry Experiment of the Chemistry “101 Plan”. University Chemistry, 2024, 39(10): 58-63. doi: 10.12461/PKU.DXHX202409109

Metrics
  • PDF Downloads(12)
  • Abstract views(2914)
  • HTML views(654)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return