Citation: WANG Gai, BO Qiong, YANG Dong-hua, LI Yu-peng, ZHAO Yu, GE Chao. Synthesis and electrochemical evaluation of nano-NiO-Y composite cathode material for hydrogen evolution in microbial electrolysis cell[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(6): 762-768. shu

Synthesis and electrochemical evaluation of nano-NiO-Y composite cathode material for hydrogen evolution in microbial electrolysis cell

  • Corresponding author: WANG Gai, 
  • Received Date: 11 January 2019
    Revised Date: 23 April 2019

    Fund Project: The project was supported by the Natural Science Foundation of Shanxi Province, China(201701D121028) and National Natural Science Foundation of China(21802101)the Natural Science Foundation of Shanxi Province, China 201701D121028National Natural Science Foundation of China 21802101

Figures(8)

  • Nano Y zeolites were synthesized by adding carbon spheres into the synthesis sol of Y zeolites subjected to aging and hydrothermal crystallization; nickel-salt precursors were then loaded by using an incipient-wetness impregnation (IWI) method. After calcination, the nano-NiO-Y composite were then characterized by means of XRD, SEM, TEM, XPS, TG-DTG, and N2 adsorption-desorption techniques and its performance as the cathode material for hydrogen evolution in microbial electrolysis cell was then investigated. The results show that the nano-NiO-Y composite has a crystal size of 500 nm of size and multiple porous structure including micro and mesopores; the total surface area and pore volume of nano-NiO-Y composites are 774.3 m2/g and 0.495 cm3/g, respectively. The electrochemical tests of linear scanning voltammetry and Tafel plots show that as microbial electrolytic cell (MEC) cathode, the nano-NiO-Y composite with a nickel-salt loading of 30% exhibits high electrocatalytic activity. In a continuous operation cycle, the largest hydrogen evolution current density of the nano-NiO-Y composites reaches 22.87 A/m2, and the H2 content is about 73.71% in total gas. The hydrogen production efficiency is 0.393 m3/(m3·d), comparable to that of Pt/C cathode.
  • 加载中
    1. [1]

      HAN Cheng, LEI Yong-peng, WANG Ying-de. Rent progress on nano-heterostructure photocatalysts for solar fuels generation[J]. J Inor Mater, 2015,30(11):1121-1130.  

    2. [2]

      WANG B, WANG Y D, LEI Y P, WANG B, WU N, SHI Q, LI Q. In situ synthesis of graphitic-C3N4 nanosheet hybridized N-doped TiO2 nanofibers for efficient photocatalytic H2 production and degradation[J]. Nano Res, 2015,8(4):1199-1209. doi: 10.1007/s12274-014-0600-2

    3. [3]

      CHENG S, LODAN B E. High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing[J]. Bioresour Technol, 2011,102(3):3571-3574. doi: 10.1016/j.biortech.2010.10.025

    4. [4]

      ZHANG K, KIM J K, PARK B, QIAN S F, JIN B J, SHENG X W, ZENG H B, SHIN H J, OH S H, LEE C L, PARK J H. Defect-induced epitaxial growth for efficient solar hydrogen production[J]. Nano Lett, 2017,17(11):6676-6683. doi: 10.1021/acs.nanolett.7b02622

    5. [5]

      ZHAO W, FIERRO V, FERNÁNDEZ-HUERTA N, IZQUIERDO M T, CELZARD A. Hydrogen uptake of high surface area-activated carbons doped with nitrogen[J]. Int J Hydrogen Energy, 2013,38(25):10453-10460. doi: 10.1016/j.ijhydene.2013.06.048

    6. [6]

      GRUBLE T, DORÉ L, HOFFRICHTER A, HOMBACH L E, RATHS S, ROBINIUS M, NOBIS M, SCHIEBAHN S, TIETZE V, SCHNETTLER A, WALTHER G, STOLTEN D. An option for stranded renewables:Electrolytic-hydrogen in future energy systems[J]. Sustainable Energy Fuels, 2018,2(5):1500-1515.  

    7. [7]

      KUMAR G, LIN C Y. Biogenic hydrogen conversion of de-oiled Jatropha waste (DJW) via anaerobic sequencing batch reactor operation:Process performance, microbial insights and CO2 reduction efficiency[J]. Sci World J, 2014:1-9.

    8. [8]

      SIRISINUDOMKIT P, IAMPRASERTKUN P, KRITTAYAVATHANANON A, PETTONG T, DITTANET P, KIDKHUNTHOD P, SAWANGPHRUK M. Hybrid energy storage of battery-type nickel hydroxide and supercapacitor-type graphene:Redox additive and charge storage mechanism[J]. Sustainable Energy Fuels, 2017,1:275-279. doi: 10.1039/C7SE00052A

    9. [9]

      WANG B, WANG Y D, LEI Y P, WU N, GOU Y Z, HAN C, XIE S, FANG D. Mesoporous silicon carbide nanofibers with in situ embedded carbon for co-catalyst free photocatalytic hydrogen production[J]. Nano Res, 2016,9(3):886-898. doi: 10.1007/s12274-015-0971-z

    10. [10]

      KHAIRY M, ELSAFTY S A. Mesoporous NiO nanoarchitectures for electrochemical energy storage:Influence of size, porosity, and morphology[J]. Rsc Adv, 2013,3(45):23801-23809. doi: 10.1039/c3ra44465a

    11. [11]

      ZHOU Y X, LEI Y P, WANG D S, CHEN C, PENG Q, LI Y D. Ultra-thin Cu2S nanosheets:Effective cocatalysts for photocatalytic hydrogen production[J]. Chem Commun, 2015,51(68):13305-13308. doi: 10.1039/C5CC05156H

    12. [12]

      DAI H Y, YANG H M, LIU X, JIAN X, LIANG Z H. Electrochemical evaluation of nano-Mg(OH)2/graphene as a catalyst for hydrogen evolution in microbial electrolysis cell[J]. Fuel, 2016,174:251-256. doi: 10.1016/j.fuel.2016.02.013

    13. [13]

      LU L, XING G F, XIE T H, REN N Q, LOGAN B E. Hydrogen production from proteins via electrohydrogenesis in microbial electrolysis cells[J]. Biosens Bioelectron, 2010,25(12):2690-2695. doi: 10.1016/j.bios.2010.05.003

    14. [14]

      DONG Z S, ZHAO Y, FAN L, WANG Y X, WANG J W, ZHANG K. Simultaneous sulfide removal and hydrogen production in a microbial electrolysis cell[J]. Int J Electrochem Sci, 2017,12(11):10553-10566.  

    15. [15]

      ALHAJRI N, ANJUM D, TAKANABE K. Molybdenum carbide-carbon nanocomposites synthesized from a reactive template for electrochemical hydrogen evolution[J]. J Mater Chem A, 2014,2(27):10548-10556. doi: 10.1039/C4TA00577E

    16. [16]

      CHEN W F, WANG C H, SASAKI K, MARINKOVIC N, XU W, MUCKERMAN J T, ZHU Y, ADZIC R R. Highly active and durable nanostructured molybdenum carbide electrocatalysts for hydrogen production[J]. Energy Environ Sci, 2013,6(3):943-951. doi: 10.1039/c2ee23891h

    17. [17]

      QU Yong-liang. Technological innovation research of Y zeolite preparation process[D]. Beijing: Beijing University of Chemical Technology, 2015. 

    18. [18]

      HU Li, YANG Dong-hua, ZHAO Yu, DONG Zhi-shuai, WANG Gai, BO Qiong. Synthesis of NiY zeolite for hydroden evolution performance study in cathode of microbial electrolysis cell[J]. J Fuel Chem Technol, 2018,46(5):106-113.  

    19. [19]

      ZHENG Z L, SUN C, DAI R, WANG S Y, WU X, AN X, XIE X M. Organotemplate-free synthesis of hollow Beta zeolite supported Pt-based catalysts for low-temperature ethanol steam reforming[J]. Catal Sci Technol, 2016,6(17):6472-6475. doi: 10.1039/C6CY01354F

    20. [20]

      ZHOU W W, ZHOU Y S, WEI Q W, DING S J, JIANG S J, ZHANG Q, LIU M F. Continuous synthesis of mesoporous Y zeolites from normal inorganic aluminosilicates and their high adsorption capacity for dibenzothiophene(DBT) and 4, 6-dimethyldibenzothiophene (4, 6-DMDBT)[J]. Chem Eng J, 2017,330(8):605-615.  

    21. [21]

      LIU Ai-yuan, ZHANG Xi-wen, HAN Gao-rong. Preparation and properties of NiO films via sol-gel process and spin-coating[J]. J Mater Sci Eng, 2010,28(6):896-899.  

    22. [22]

      ZHENG Z L, YANG D H, LI T T, YIN X M, WANG S Y, WU X, AN X, XIE X M. A novel BEA-type zeolite core-shell multiple catalyst for hydrogen-rich gas production from ethanol steam reforming[J]. Catal Sci Technol, 2016,6(14):5427-5439. doi: 10.1039/C6CY00119J

    23. [23]

      REN Bin. Characterization and application of functional nanomaterials prepared by using carbon spheres as templates[D]. Chongqing: Chongqing University, 2016. 

    24. [24]

      LI De-bao, XI Hong-Juan, HOU Bo, LIN Ming-gui, JIA Li-tao. A Preparation method of smallgrain ZSM-22 molecular sieve. CN, 105565339A[P]. 2016-05-11. 

    25. [25]

      YANG Dong-hua, SHI Bao-bao, WANG Xin-bo, WU Zheng-huang, DOU Tao, ZHENG Zi-liang, DAI Rong. Synthesis and characterization of a new type silicoaluminophophate SAPO-53 molecular sieves[J]. J Fuel Chem Technol, 2014,42(5):625-634.  

    26. [26]

      CUI Zhen-zhen, YIN Hao-yong, ZHAO Hong-ting, NIE Qiu-lin. Preparation and glucose sensing property of core-shelled nikel oxide/carbon microspheres[J]. J Inorg Mater, 2015,30(3):305-310.  

    27. [27]

      ZHAO Q, ZHONG D, LIU L, LI D D, HAO G Y, LI J P. Facile fabrication of robust 3D Fe-NiSe nanowires supported on nickel foam as a highly efficient, durable oxygen evolution catalyst[J]. J Mater Chem A, 2017,5(28):14639-14645. doi: 10.1039/C7TA03095A

    28. [28]

      SOLEIMANI E, MOHAMMADI M. Synthesis, characterization and properties of polystyrene/NiO nanocomposites[J]. J Mater Sci Mater Electron, 2018,29(11):9494-9508. doi: 10.1007/s10854-018-8983-6

    29. [29]

      DAI Hong-yan, YANG Hui-min, LIU Xian, JIAN Xuan, GUO Min-min, CAO Le-le, LIANG Zhen-hai. Preparation and electrochemical evaluation of MoS2/graphene as a catalyst for hydrogen evolution in microbial electrolysis cell[J]. Chem J Chin Univ, 2018,39(2):351-358.  

    30. [30]

      CHO G, KIM H, PARK Y S, HONG Y K, HA D H. Phase transformation of iron phosphide nanoparticles for hydrogen evolution reaction electrocatalysis[J]. Int J Hydrogen Energy, 2018,43(24):11326-11334. doi: 10.1016/j.ijhydene.2018.02.197

    31. [31]

      LI Z C, MA J J, ZHOU Y, YIN Z G, TANG Y B, MA Y X, WANG D B. Synthesis of sulfur-rich MoS2, nanoflowers for enhanced hydrogen evolution reaction performance[J]. Electrochim Acta, 2018,283(1):306-312.  

    32. [32]

      WANG A, LIU W, CHENG S, XING D F, ZHOU J Z, LOGAN B E. Source of methane and methods to control its formation in single chamber microbial electrolysis cells[J]. Int J Hydrogen Energy, 2009,34(9):3653-3658. doi: 10.1016/j.ijhydene.2009.03.005

  • 加载中
    1. [1]

      Doudou QinJunyang DingChu LiangQian LiuLigang FengYang LuoGuangzhi HuJun LuoXijun Liu . Addressing Challenges and Enhancing Performance of Manganese-based Cathode Materials in Aqueous Zinc-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(10): 2310034-0. doi: 10.3866/PKU.WHXB202310034

    2. [2]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    3. [3]

      Ru SONGBiao WANGChunling LUBingbing NIUDongchao QIU . Electrochemical properties of stable and highly active PrBa0.5Sr0.5Fe1.6Ni0.4O5+δ cathode material. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 639-649. doi: 10.11862/CJIC.20240397

    4. [4]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    5. [5]

      Jinglin CHENGXiaoming GUOTao MENGXu HULiang LIYanzhe WANGWenzhu HUANG . NiAlNd catalysts for CO2 methanation derived from the layered double hydroxide precursor. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1592-1602. doi: 10.11862/CJIC.20240152

    6. [6]

      Pingping HAOFangfang LIYawen WANGHoufen LIXiao ZHANGRui LILei WANGJianxin LIU . Hydrogen production performance of the non-platinum-based MoS2/CuS cathode in microbial electrolytic cells. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1811-1824. doi: 10.11862/CJIC.20240054

    7. [7]

      Yikai WangXiaolin JiangHaoming SongNan WeiYifan WangXinjun XuCuihong LiHao LuYahui LiuZhishan Bo . Thickness-Insensitive, Cyano-Modified Perylene Diimide Derivative as a Cathode Interlayer Material for High-Efficiency Organic Solar Cells. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-0. doi: 10.3866/PKU.WHXB202406007

    8. [8]

      Xue XiaoJiachun LiXiangtong MengJieshan Qiu . Sulfur-Doped Carbon-Coated Fe0.95S1.05 Nanospheres as Anodes for High-Performance Sodium Storage. Acta Physico-Chimica Sinica, 2024, 40(6): 2307006-0. doi: 10.3866/PKU.WHXB202307006

    9. [9]

      Min LIXianfeng MENG . Preparation and microwave absorption properties of ZIF-67 derived Co@C/MoS2 nanocomposites. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1932-1942. doi: 10.11862/CJIC.20240065

    10. [10]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

    11. [11]

      Yihan XueXue HanJie ZhangXiaoru Wen . NCQDs修饰FeOOH基复合材料的制备及其电容脱盐性能. Acta Physico-Chimica Sinica, 2025, 41(7): 100072-0. doi: 10.1016/j.actphy.2025.100072

    12. [12]

      Jiahong ZHENGJiajun SHENXin BAI . Preparation and electrochemical properties of nickel foam loaded NiMoO4/NiMoS4 composites. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 581-590. doi: 10.11862/CJIC.20230253

    13. [13]

      Fangfang WANGJiaqi CHENWeiyin SUN . CuBi@Cu-MOF composite catalysts for electrocatalytic CO2 reduction to HCOOH. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 97-104. doi: 10.11862/CJIC.20240350

    14. [14]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    15. [15]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    16. [16]

      Qiangqiang SUNPengcheng ZHAORuoyu WUBaoyue CAO . Multistage microporous bifunctional catalyst constructed by P-doped nickel-based sulfide ultra-thin nanosheets for energy-efficient hydrogen production from water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1151-1161. doi: 10.11862/CJIC.20230454

    17. [17]

      Yuanchao LIWeifeng HUANGPengchao LIANGZifang ZHAOBaoyan XINGDongliang YANLi YANGSonglin WANG . Effect of heterogeneous dual carbon sources on electrochemical properties of LiMn0.8Fe0.2PO4/C composites. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 751-760. doi: 10.11862/CJIC.20230252

    18. [18]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    19. [19]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    20. [20]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

Metrics
  • PDF Downloads(7)
  • Abstract views(1302)
  • HTML views(189)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return